All,
        The conversion of i386 to use the new timeofday subsystem has been
split into 4 parts. This patch, the second of four, is a cleanup patch
for the i386 arch in preperation of moving the the new timeofday
infrastructure. It moves some code from timer_tsc.c to a new tsc.c file.

It applies on top of my timeofday-arch-i386-part1 patch. This patch is
part the timeofday-arch-i386 patchset, so without the following parts it
is not expected to compile.

thanks
-john

linux-2.6.13-rc3_timeofday-arch-i386-part2_B4.patch
============================================
diff --git a/arch/i386/kernel/Makefile b/arch/i386/kernel/Makefile
--- a/arch/i386/kernel/Makefile
+++ b/arch/i386/kernel/Makefile
@@ -7,7 +7,7 @@ extra-y := head.o init_task.o vmlinux.ld
 obj-y  := process.o semaphore.o signal.o entry.o traps.o irq.o vm86.o \
                ptrace.o time.o ioport.o ldt.o setup.o i8259.o sys_i386.o \
                pci-dma.o i386_ksyms.o i387.o dmi_scan.o bootflag.o \
-               doublefault.o quirks.o
+               doublefault.o quirks.o tsc.o
 
 obj-y                          += cpu/
 obj-y                          += timers/
diff --git a/arch/i386/kernel/timers/common.c b/arch/i386/kernel/timers/common.c
--- a/arch/i386/kernel/timers/common.c
+++ b/arch/i386/kernel/timers/common.c
@@ -14,66 +14,6 @@
 
 #include "mach_timer.h"
 
-/* ------ Calibrate the TSC -------
- * Return 2^32 * (1 / (TSC clocks per usec)) for do_fast_gettimeoffset().
- * Too much 64-bit arithmetic here to do this cleanly in C, and for
- * accuracy's sake we want to keep the overhead on the CTC speaker (channel 2)
- * output busy loop as low as possible. We avoid reading the CTC registers
- * directly because of the awkward 8-bit access mechanism of the 82C54
- * device.
- */
-
-#define CALIBRATE_TIME (5 * 1000020/HZ)
-
-unsigned long calibrate_tsc(void)
-{
-       mach_prepare_counter();
-
-       {
-               unsigned long startlow, starthigh;
-               unsigned long endlow, endhigh;
-               unsigned long count;
-
-               rdtsc(startlow,starthigh);
-               mach_countup(&count);
-               rdtsc(endlow,endhigh);
-
-
-               /* Error: ECTCNEVERSET */
-               if (count <= 1)
-                       goto bad_ctc;
-
-               /* 64-bit subtract - gcc just messes up with long longs */
-               __asm__("subl %2,%0\n\t"
-                       "sbbl %3,%1"
-                       :"=a" (endlow), "=d" (endhigh)
-                       :"g" (startlow), "g" (starthigh),
-                        "0" (endlow), "1" (endhigh));
-
-               /* Error: ECPUTOOFAST */
-               if (endhigh)
-                       goto bad_ctc;
-
-               /* Error: ECPUTOOSLOW */
-               if (endlow <= CALIBRATE_TIME)
-                       goto bad_ctc;
-
-               __asm__("divl %2"
-                       :"=a" (endlow), "=d" (endhigh)
-                       :"r" (endlow), "0" (0), "1" (CALIBRATE_TIME));
-
-               return endlow;
-       }
-
-       /*
-        * The CTC wasn't reliable: we got a hit on the very first read,
-        * or the CPU was so fast/slow that the quotient wouldn't fit in
-        * 32 bits..
-        */
-bad_ctc:
-       return 0;
-}
-
 #ifdef CONFIG_HPET_TIMER
 /* ------ Calibrate the TSC using HPET -------
  * Return 2^32 * (1 / (TSC clocks per usec)) for getting the CPU freq.
@@ -146,27 +86,3 @@ unsigned long read_timer_tsc(void)
        rdtscl(retval);
        return retval;
 }
-
-
-/* calculate cpu_khz */
-void init_cpu_khz(void)
-{
-       if (cpu_has_tsc) {
-               unsigned long tsc_quotient = calibrate_tsc();
-               if (tsc_quotient) {
-                       /* report CPU clock rate in Hz.
-                        * The formula is (10^6 * 2^32) / (2^32 * 1 / 
(clocks/us)) =
-                        * clock/second. Our precision is about 100 ppm.
-                        */
-                       {       unsigned long eax=0, edx=1000;
-                               __asm__("divl %2"
-                               :"=a" (cpu_khz), "=d" (edx)
-                               :"r" (tsc_quotient),
-                               "0" (eax), "1" (edx));
-                               printk("Detected %u.%03u MHz processor.\n",
-                                       cpu_khz / 1000, cpu_khz % 1000);
-                       }
-               }
-       }
-}
-
diff --git a/arch/i386/kernel/timers/timer_tsc.c 
b/arch/i386/kernel/timers/timer_tsc.c
--- a/arch/i386/kernel/timers/timer_tsc.c
+++ b/arch/i386/kernel/timers/timer_tsc.c
@@ -32,10 +32,6 @@ static unsigned long hpet_last;
 static struct timer_opts timer_tsc;
 #endif
 
-static inline void cpufreq_delayed_get(void);
-
-int tsc_disable __devinitdata = 0;
-
 static int use_tsc;
 /* Number of usecs that the last interrupt was delayed */
 static int delay_at_last_interrupt;
@@ -45,34 +41,6 @@ static unsigned long last_tsc_high; /* m
 static unsigned long long monotonic_base;
 static seqlock_t monotonic_lock = SEQLOCK_UNLOCKED;
 
-/* convert from cycles(64bits) => nanoseconds (64bits)
- *  basic equation:
- *             ns = cycles / (freq / ns_per_sec)
- *             ns = cycles * (ns_per_sec / freq)
- *             ns = cycles * (10^9 / (cpu_mhz * 10^6))
- *             ns = cycles * (10^3 / cpu_mhz)
- *
- *     Then we use scaling math (suggested by george@mvista.com) to get:
- *             ns = cycles * (10^3 * SC / cpu_mhz) / SC
- *             ns = cycles * cyc2ns_scale / SC
- *
- *     And since SC is a constant power of two, we can convert the div
- *  into a shift.   
- *                     [EMAIL PROTECTED] "math is hard, lets go shopping!"
- */
-static unsigned long cyc2ns_scale; 
-#define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
-
-static inline void set_cyc2ns_scale(unsigned long cpu_mhz)
-{
-       cyc2ns_scale = (1000 << CYC2NS_SCALE_FACTOR)/cpu_mhz;
-}
-
-static inline unsigned long long cycles_2_ns(unsigned long long cyc)
-{
-       return (cyc * cyc2ns_scale) >> CYC2NS_SCALE_FACTOR;
-}
-
 static int count2; /* counter for mark_offset_tsc() */
 
 /* Cached *multiplier* to convert TSC counts to microseconds.
@@ -130,29 +98,6 @@ static unsigned long long monotonic_cloc
        return base + cycles_2_ns(this_offset - last_offset);
 }
 
-/*
- * Scheduler clock - returns current time in nanosec units.
- */
-unsigned long long sched_clock(void)
-{
-       unsigned long long this_offset;
-
-       /*
-        * In the NUMA case we dont use the TSC as they are not
-        * synchronized across all CPUs.
-        */
-#ifndef CONFIG_NUMA
-       if (!use_tsc)
-#endif
-               /* no locking but a rare wrong value is not a big deal */
-               return jiffies_64 * (1000000000 / HZ);
-
-       /* Read the Time Stamp Counter */
-       rdtscll(this_offset);
-
-       /* return the value in ns */
-       return cycles_2_ns(this_offset);
-}
 
 static void delay_tsc(unsigned long loops)
 {
@@ -217,127 +162,6 @@ static void mark_offset_tsc_hpet(void)
 #endif
 
 
-#ifdef CONFIG_CPU_FREQ
-#include <linux/workqueue.h>
-
-static unsigned int cpufreq_delayed_issched = 0;
-static unsigned int cpufreq_init = 0;
-static struct work_struct cpufreq_delayed_get_work;
-
-static void handle_cpufreq_delayed_get(void *v)
-{
-       unsigned int cpu;
-       for_each_online_cpu(cpu) {
-               cpufreq_get(cpu);
-       }
-       cpufreq_delayed_issched = 0;
-}
-
-/* if we notice lost ticks, schedule a call to cpufreq_get() as it tries
- * to verify the CPU frequency the timing core thinks the CPU is running
- * at is still correct.
- */
-static inline void cpufreq_delayed_get(void) 
-{
-       if (cpufreq_init && !cpufreq_delayed_issched) {
-               cpufreq_delayed_issched = 1;
-               printk(KERN_DEBUG "Losing some ticks... checking if CPU 
frequency changed.\n");
-               schedule_work(&cpufreq_delayed_get_work);
-       }
-}
-
-/* If the CPU frequency is scaled, TSC-based delays will need a different
- * loops_per_jiffy value to function properly.
- */
-
-static unsigned int  ref_freq = 0;
-static unsigned long loops_per_jiffy_ref = 0;
-
-#ifndef CONFIG_SMP
-static unsigned long fast_gettimeoffset_ref = 0;
-static unsigned int cpu_khz_ref = 0;
-#endif
-
-static int
-time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
-                      void *data)
-{
-       struct cpufreq_freqs *freq = data;
-
-       if (val != CPUFREQ_RESUMECHANGE)
-               write_seqlock_irq(&xtime_lock);
-       if (!ref_freq) {
-               ref_freq = freq->old;
-               loops_per_jiffy_ref = cpu_data[freq->cpu].loops_per_jiffy;
-#ifndef CONFIG_SMP
-               fast_gettimeoffset_ref = fast_gettimeoffset_quotient;
-               cpu_khz_ref = cpu_khz;
-#endif
-       }
-
-       if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
-           (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
-           (val == CPUFREQ_RESUMECHANGE)) {
-               if (!(freq->flags & CPUFREQ_CONST_LOOPS))
-                       cpu_data[freq->cpu].loops_per_jiffy = 
cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
-#ifndef CONFIG_SMP
-               if (cpu_khz)
-                       cpu_khz = cpufreq_scale(cpu_khz_ref, ref_freq, 
freq->new);
-               if (use_tsc) {
-                       if (!(freq->flags & CPUFREQ_CONST_LOOPS)) {
-                               fast_gettimeoffset_quotient = 
cpufreq_scale(fast_gettimeoffset_ref, freq->new, ref_freq);
-                               set_cyc2ns_scale(cpu_khz/1000);
-                       }
-               }
-#endif
-       }
-
-       if (val != CPUFREQ_RESUMECHANGE)
-               write_sequnlock_irq(&xtime_lock);
-
-       return 0;
-}
-
-static struct notifier_block time_cpufreq_notifier_block = {
-       .notifier_call  = time_cpufreq_notifier
-};
-
-
-static int __init cpufreq_tsc(void)
-{
-       int ret;
-       INIT_WORK(&cpufreq_delayed_get_work, handle_cpufreq_delayed_get, NULL);
-       ret = cpufreq_register_notifier(&time_cpufreq_notifier_block,
-                                       CPUFREQ_TRANSITION_NOTIFIER);
-       if (!ret)
-               cpufreq_init = 1;
-       return ret;
-}
-core_initcall(cpufreq_tsc);
-
-#else /* CONFIG_CPU_FREQ */
-static inline void cpufreq_delayed_get(void) { return; }
-#endif 
-
-int recalibrate_cpu_khz(void)
-{
-#ifndef CONFIG_SMP
-       unsigned int cpu_khz_old = cpu_khz;
-
-       if (cpu_has_tsc) {
-               init_cpu_khz();
-               cpu_data[0].loops_per_jiffy =
-                   cpufreq_scale(cpu_data[0].loops_per_jiffy,
-                                 cpu_khz_old,
-                                 cpu_khz);
-               return 0;
-       } else
-               return -ENODEV;
-#else
-       return -ENODEV;
-#endif
-}
-EXPORT_SYMBOL(recalibrate_cpu_khz);
 
 static void mark_offset_tsc(void)
 {
@@ -543,24 +367,6 @@ static int __init init_tsc(char* overrid
        return -ENODEV;
 }
 
-#ifndef CONFIG_X86_TSC
-/* disable flag for tsc.  Takes effect by clearing the TSC cpu flag
- * in cpu/common.c */
-static int __init tsc_setup(char *str)
-{
-       tsc_disable = 1;
-       return 1;
-}
-#else
-static int __init tsc_setup(char *str)
-{
-       printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, "
-                               "cannot disable TSC.\n");
-       return 1;
-}
-#endif
-__setup("notsc", tsc_setup);
-
 
 
 /************************************************************/
diff --git a/arch/i386/kernel/tsc.c b/arch/i386/kernel/tsc.c
new file mode 100644
--- /dev/null
+++ b/arch/i386/kernel/tsc.c
@@ -0,0 +1,298 @@
+/*
+ * This code largely moved from arch/i386/kernel/timer/timer_tsc.c
+ * which was originally moved from arch/i386/kernel/time.c.
+ * See comments there for proper credits.
+ */
+
+#include <linux/init.h>
+#include <linux/timex.h>
+#include <linux/cpufreq.h>
+#include <asm/io.h>
+#include "mach_timer.h"
+
+int tsc_disable __initdata = 0;
+#ifndef CONFIG_X86_TSC
+/* disable flag for tsc.  Takes effect by clearing the TSC cpu flag
+ * in cpu/common.c */
+static int __init tsc_setup(char *str)
+{
+       tsc_disable = 1;
+       return 1;
+}
+#else
+static int __init tsc_setup(char *str)
+{
+       printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, "
+                               "cannot disable TSC.\n");
+       return 1;
+}
+#endif
+__setup("notsc", tsc_setup);
+
+
+int read_current_timer(unsigned long *timer_val)
+{
+       if (cur_timer->read_timer) {
+               *timer_val = cur_timer->read_timer();
+               return 0;
+       }
+       return -1;
+}
+
+
+/* convert from cycles(64bits) => nanoseconds (64bits)
+ *  basic equation:
+ *             ns = cycles / (freq / ns_per_sec)
+ *             ns = cycles * (ns_per_sec / freq)
+ *             ns = cycles * (10^9 / (cpu_mhz * 10^6))
+ *             ns = cycles * (10^3 / cpu_mhz)
+ *
+ *     Then we use scaling math (suggested by george@mvista.com) to get:
+ *             ns = cycles * (10^3 * SC / cpu_mhz) / SC
+ *             ns = cycles * cyc2ns_scale / SC
+ *
+ *     And since SC is a constant power of two, we can convert the div
+ *  into a shift.
+ *                     [EMAIL PROTECTED] "math is hard, lets go shopping!"
+ */
+static unsigned long cyc2ns_scale;
+#define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
+
+static inline void set_cyc2ns_scale(unsigned long cpu_mhz)
+{
+       cyc2ns_scale = (1000 << CYC2NS_SCALE_FACTOR)/cpu_mhz;
+}
+
+static inline unsigned long long cycles_2_ns(unsigned long long cyc)
+{
+       return (cyc * cyc2ns_scale) >> CYC2NS_SCALE_FACTOR;
+}
+
+/*
+ * Scheduler clock - returns current time in nanosec units.
+ */
+unsigned long long sched_clock(void)
+{
+       unsigned long long this_offset;
+
+       /*
+        * In the NUMA case we dont use the TSC as they are not
+        * synchronized across all CPUs.
+        */
+#ifndef CONFIG_NUMA
+       if (!use_tsc)
+#endif
+               /* no locking but a rare wrong value is not a big deal */
+               return jiffies_64 * (1000000000 / HZ);
+
+       /* Read the Time Stamp Counter */
+       rdtscll(this_offset);
+
+       /* return the value in ns */
+       return cycles_2_ns(this_offset);
+}
+
+/* ------ Calibrate the TSC -------
+ * Return 2^32 * (1 / (TSC clocks per usec)) for do_fast_gettimeoffset().
+ * Too much 64-bit arithmetic here to do this cleanly in C, and for
+ * accuracy's sake we want to keep the overhead on the CTC speaker (channel 2)
+ * output busy loop as low as possible. We avoid reading the CTC registers
+ * directly because of the awkward 8-bit access mechanism of the 82C54
+ * device.
+ */
+
+#define CALIBRATE_TIME (5 * 1000020/HZ)
+
+unsigned long calibrate_tsc(void)
+{
+       mach_prepare_counter();
+
+       {
+               unsigned long startlow, starthigh;
+               unsigned long endlow, endhigh;
+               unsigned long count;
+
+               rdtsc(startlow,starthigh);
+               mach_countup(&count);
+               rdtsc(endlow,endhigh);
+
+
+               /* Error: ECTCNEVERSET */
+               if (count <= 1)
+                       goto bad_ctc;
+
+               /* 64-bit subtract - gcc just messes up with long longs */
+               __asm__("subl %2,%0\n\t"
+                       "sbbl %3,%1"
+                       :"=a" (endlow), "=d" (endhigh)
+                       :"g" (startlow), "g" (starthigh),
+                        "0" (endlow), "1" (endhigh));
+
+               /* Error: ECPUTOOFAST */
+               if (endhigh)
+                       goto bad_ctc;
+
+               /* Error: ECPUTOOSLOW */
+               if (endlow <= CALIBRATE_TIME)
+                       goto bad_ctc;
+
+               __asm__("divl %2"
+                       :"=a" (endlow), "=d" (endhigh)
+                       :"r" (endlow), "0" (0), "1" (CALIBRATE_TIME));
+
+               return endlow;
+       }
+
+       /*
+        * The CTC wasn't reliable: we got a hit on the very first read,
+        * or the CPU was so fast/slow that the quotient wouldn't fit in
+        * 32 bits..
+        */
+bad_ctc:
+       return 0;
+}
+
+int recalibrate_cpu_khz(void)
+{
+#ifndef CONFIG_SMP
+       unsigned long cpu_khz_old = cpu_khz;
+
+       if (cpu_has_tsc) {
+               init_cpu_khz();
+               cpu_data[0].loops_per_jiffy =
+                   cpufreq_scale(cpu_data[0].loops_per_jiffy,
+                                 cpu_khz_old,
+                                 cpu_khz);
+               return 0;
+       } else
+               return -ENODEV;
+#else
+       return -ENODEV;
+#endif
+}
+EXPORT_SYMBOL(recalibrate_cpu_khz);
+
+
+/* calculate cpu_khz */
+void init_cpu_khz(void)
+{
+       if (cpu_has_tsc) {
+               unsigned long tsc_quotient = calibrate_tsc();
+               if (tsc_quotient) {
+                       /* report CPU clock rate in Hz.
+                        * The formula is (10^6 * 2^32) / (2^32 * 1 / 
(clocks/us)) =
+                        * clock/second. Our precision is about 100 ppm.
+                        */
+                       {       unsigned long eax=0, edx=1000;
+                               __asm__("divl %2"
+                               :"=a" (cpu_khz), "=d" (edx)
+                               :"r" (tsc_quotient),
+                               "0" (eax), "1" (edx));
+                               printk("Detected %lu.%03lu MHz processor.\n", 
cpu_khz / 1000, cpu_khz % 1000);
+                       }
+               }
+       }
+}
+
+
+#ifdef CONFIG_CPU_FREQ
+#include <linux/workqueue.h>
+
+static unsigned int cpufreq_delayed_issched = 0;
+static unsigned int cpufreq_init = 0;
+static struct work_struct cpufreq_delayed_get_work;
+
+static void handle_cpufreq_delayed_get(void *v)
+{
+       unsigned int cpu;
+       for_each_online_cpu(cpu) {
+               cpufreq_get(cpu);
+       }
+       cpufreq_delayed_issched = 0;
+}
+
+/* if we notice lost ticks, schedule a call to cpufreq_get() as it tries
+ * to verify the CPU frequency the timing core thinks the CPU is running
+ * at is still correct.
+ */
+void cpufreq_delayed_get(void)
+{
+       if (cpufreq_init && !cpufreq_delayed_issched) {
+               cpufreq_delayed_issched = 1;
+               printk(KERN_DEBUG "Losing some ticks... checking if CPU 
frequency changed.\n");
+               schedule_work(&cpufreq_delayed_get_work);
+       }
+}
+
+/* If the CPU frequency is scaled, TSC-based delays will need a different
+ * loops_per_jiffy value to function properly.
+ */
+
+static unsigned int  ref_freq = 0;
+static unsigned long loops_per_jiffy_ref = 0;
+
+#ifndef CONFIG_SMP
+static unsigned long fast_gettimeoffset_ref = 0;
+static unsigned long cpu_khz_ref = 0;
+#endif
+
+static int
+time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
+                      void *data)
+{
+       struct cpufreq_freqs *freq = data;
+
+       if (val != CPUFREQ_RESUMECHANGE)
+               write_seqlock_irq(&xtime_lock);
+       if (!ref_freq) {
+               ref_freq = freq->old;
+               loops_per_jiffy_ref = cpu_data[freq->cpu].loops_per_jiffy;
+#ifndef CONFIG_SMP
+               fast_gettimeoffset_ref = fast_gettimeoffset_quotient;
+               cpu_khz_ref = cpu_khz;
+#endif
+       }
+
+       if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
+           (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
+           (val == CPUFREQ_RESUMECHANGE)) {
+               if (!(freq->flags & CPUFREQ_CONST_LOOPS))
+                       cpu_data[freq->cpu].loops_per_jiffy = 
cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
+#ifndef CONFIG_SMP
+               if (cpu_khz)
+                       cpu_khz = cpufreq_scale(cpu_khz_ref, ref_freq, 
freq->new);
+               if (use_tsc) {
+                       if (!(freq->flags & CPUFREQ_CONST_LOOPS)) {
+                               fast_gettimeoffset_quotient = 
cpufreq_scale(fast_gettimeoffset_ref, freq->new, ref_freq);
+                               set_cyc2ns_scale(cpu_khz/1000);
+                       }
+               }
+#endif
+       }
+
+       if (val != CPUFREQ_RESUMECHANGE)
+               write_sequnlock_irq(&xtime_lock);
+
+       return 0;
+}
+
+static struct notifier_block time_cpufreq_notifier_block = {
+       .notifier_call  = time_cpufreq_notifier
+};
+
+
+static int __init cpufreq_tsc(void)
+{
+       int ret;
+       INIT_WORK(&cpufreq_delayed_get_work, handle_cpufreq_delayed_get, NULL);
+       ret = cpufreq_register_notifier(&time_cpufreq_notifier_block,
+                                       CPUFREQ_TRANSITION_NOTIFIER);
+       if (!ret)
+               cpufreq_init = 1;
+       return ret;
+}
+core_initcall(cpufreq_tsc);
+
+#else /* CONFIG_CPU_FREQ */
+void cpufreq_delayed_get(void) { return; }
+#endif


-
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to [EMAIL PROTECTED]
More majordomo info at  http://vger.kernel.org/majordomo-info.html
Please read the FAQ at  http://www.tux.org/lkml/

Reply via email to