All,

        This patch changes the NTP variable names from time_* to ntp_* further
clarifying their use. 

Any comments or feedback would be greatly appreciated.

thanks
-john


linux-2.6.13-rc3_timeofday-ntp-part9_B4.patch
============================================
diff --git a/arch/cris/kernel/time.c b/arch/cris/kernel/time.c
--- a/arch/cris/kernel/time.c
+++ b/arch/cris/kernel/time.c
@@ -68,11 +68,11 @@ void do_gettimeofday(struct timeval *tv)
        }
 
         /*
-        * If time_adjust is negative then NTP is slowing the clock
+        * If ntp_adjtime_offset is negative then NTP is slowing the clock
         * so make sure not to go into next possible interval.
         * Better to lose some accuracy than have time go backwards..
         */
-       if (unlikely(time_adjust < 0) && usec > tickadj)
+       if (unlikely(ntp_adjtime_offset < 0) && usec > tickadj)
                usec = tickadj;
 
        sec = xtime.tv_sec;
diff --git a/arch/frv/kernel/time.c b/arch/frv/kernel/time.c
--- a/arch/frv/kernel/time.c
+++ b/arch/frv/kernel/time.c
@@ -166,11 +166,11 @@ void do_gettimeofday(struct timeval *tv)
                lost = jiffies - wall_jiffies;
 
                /*
-                * If time_adjust is negative then NTP is slowing the clock
+                * If ntp_adjtime_offset is negative then NTP is slowing the 
clock
                 * so make sure not to go into next possible interval.
                 * Better to lose some accuracy than have time go backwards..
                 */
-               if (unlikely(time_adjust < 0)) {
+               if (unlikely(ntp_adjtime_offset < 0)) {
                        max_ntp_tick = (USEC_PER_SEC / HZ) - tickadj;
                        usec = min(usec, max_ntp_tick);
 
diff --git a/arch/i386/kernel/time.c b/arch/i386/kernel/time.c
--- a/arch/i386/kernel/time.c
+++ b/arch/i386/kernel/time.c
@@ -142,11 +142,11 @@ void do_gettimeofday(struct timeval *tv)
                lost = jiffies - wall_jiffies;
 
                /*
-                * If time_adjust is negative then NTP is slowing the clock
+                * If ntp_adjtime_offset is negative then NTP is slowing the 
clock
                 * so make sure not to go into next possible interval.
                 * Better to lose some accuracy than have time go backwards..
                 */
-               if (unlikely(time_adjust < 0)) {
+               if (unlikely(ntp_adjtime_offset < 0)) {
                        max_ntp_tick = (USEC_PER_SEC / HZ) - tickadj;
                        usec = min(usec, max_ntp_tick);
 
diff --git a/arch/m32r/kernel/time.c b/arch/m32r/kernel/time.c
--- a/arch/m32r/kernel/time.c
+++ b/arch/m32r/kernel/time.c
@@ -122,11 +122,11 @@ void do_gettimeofday(struct timeval *tv)
                lost = jiffies - wall_jiffies;
 
                /*
-                * If time_adjust is negative then NTP is slowing the clock
+                * If ntp_adjtime_offset is negative then NTP is slowing the 
clock
                 * so make sure not to go into next possible interval.
                 * Better to lose some accuracy than have time go backwards..
                 */
-               if (unlikely(time_adjust < 0)) {
+               if (unlikely(ntp_adjtime_offset < 0)) {
                        usec = min(usec, max_ntp_tick);
                        if (lost)
                                usec += lost * max_ntp_tick;
diff --git a/arch/mips/kernel/time.c b/arch/mips/kernel/time.c
--- a/arch/mips/kernel/time.c
+++ b/arch/mips/kernel/time.c
@@ -171,11 +171,11 @@ void do_gettimeofday(struct timeval *tv)
                lost = jiffies - wall_jiffies;
 
                /*
-                * If time_adjust is negative then NTP is slowing the clock
+                * If ntp_adjtime_offset is negative then NTP is slowing the 
clock
                 * so make sure not to go into next possible interval.
                 * Better to lose some accuracy than have time go backwards..
                 */
-               if (unlikely(time_adjust < 0)) {
+               if (unlikely(ntp_adjtime_offset < 0)) {
                        usec = min(usec, max_ntp_tick);
 
                        if (lost)
diff --git a/arch/ppc64/kernel/time.c b/arch/ppc64/kernel/time.c
--- a/arch/ppc64/kernel/time.c
+++ b/arch/ppc64/kernel/time.c
@@ -355,7 +355,7 @@ int timer_interrupt(struct pt_regs * reg
                        timer_sync_xtime(lpaca->next_jiffy_update_tb);
                        timer_check_rtc();
                        write_sequnlock(&xtime_lock);
-                       if ( adjusting_time && (time_adjust == 0) )
+                       if ( adjusting_time && (ntp_adjtime_offset == 0) )
                                ppc_adjtimex();
                }
                lpaca->next_jiffy_update_tb += tb_ticks_per_jiffy;
@@ -582,7 +582,7 @@ void __init time_init(void)
        systemcfg->stamp_xsec = xtime.tv_sec * XSEC_PER_SEC;
        systemcfg->tb_to_xs = tb_to_xs;
 
-       time_freq = 0;
+       ntp_freq = 0;
 
        xtime.tv_nsec = 0;
        last_rtc_update = xtime.tv_sec;
@@ -599,7 +599,7 @@ void __init time_init(void)
  * to microseconds to keep do_gettimeofday synchronized 
  * with ntpd.
  *
- * Use the time_adjust, time_freq and time_offset computed by adjtimex to 
+ * Use the ntp_adjtime_offset, ntp_freq and ntp_offset computed by adjtimex to 
  * adjust the frequency.
  */
 
@@ -617,32 +617,32 @@ void ppc_adjtimex(void)
        long singleshot_ppm = 0;
 
        /* Compute parts per million frequency adjustment to accomplish the 
time adjustment
-          implied by time_offset to be applied over the elapsed time indicated 
by time_constant.
-          Use SHIFT_USEC to get it into the same units as time_freq. */
-       if ( time_offset < 0 ) {
-               ltemp = -time_offset;
+          implied by ntp_offset to be applied over the elapsed time indicated 
by ntp_constant.
+          Use SHIFT_USEC to get it into the same units as ntp_freq. */
+       if ( ntp_offset < 0 ) {
+               ltemp = -ntp_offset;
                ltemp <<= SHIFT_USEC - SHIFT_UPDATE;
-               ltemp >>= SHIFT_KG + time_constant;
+               ltemp >>= SHIFT_KG + ntp_constant;
                ltemp = -ltemp;
        }
        else {
-               ltemp = time_offset;
+               ltemp = ntp_offset;
                ltemp <<= SHIFT_USEC - SHIFT_UPDATE;
-               ltemp >>= SHIFT_KG + time_constant;
+               ltemp >>= SHIFT_KG + ntp_constant;
        }
        
        /* If there is a single shot time adjustment in progress */
-       if ( time_adjust ) {
+       if ( ntp_adjtime_offset ) {
 #ifdef DEBUG_PPC_ADJTIMEX
                printk("ppc_adjtimex: ");
                if ( adjusting_time == 0 )
                        printk("starting ");
-               printk("single shot time_adjust = %ld\n", time_adjust);
+               printk("single shot ntp_adjtime_offset = %ld\n", 
ntp_adjtime_offset);
 #endif 
        
                adjusting_time = 1;
                
-               /* Compute parts per million frequency adjustment to match 
time_adjust */
+               /* Compute parts per million frequency adjustment to match 
ntp_adjtime_offset */
                singleshot_ppm = tickadj * HZ;  
                /*
                 * The adjustment should be tickadj*HZ to match the code in
@@ -650,21 +650,21 @@ void ppc_adjtimex(void)
                 * large. 3/4 of tickadj*HZ seems about right
                 */
                singleshot_ppm -= singleshot_ppm / 4;
-               /* Use SHIFT_USEC to get it into the same units as time_freq */ 
+               /* Use SHIFT_USEC to get it into the same units as ntp_freq */  
                singleshot_ppm <<= SHIFT_USEC;
-               if ( time_adjust < 0 )
+               if ( ntp_adjtime_offset < 0 )
                        singleshot_ppm = -singleshot_ppm;
        }
        else {
 #ifdef DEBUG_PPC_ADJTIMEX
                if ( adjusting_time )
-                       printk("ppc_adjtimex: ending single shot 
time_adjust\n");
+                       printk("ppc_adjtimex: ending single shot 
ntp_adjtime_offset\n");
 #endif
                adjusting_time = 0;
        }
        
        /* Add up all of the frequency adjustments */
-       delta_freq = time_freq + ltemp + singleshot_ppm;
+       delta_freq = ntp_freq + ltemp + singleshot_ppm;
        
        /* Compute a new value for tb_ticks_per_sec based on the frequency 
adjustment */
        den = 1000000 * (1 << (SHIFT_USEC - 8));
@@ -678,7 +678,7 @@ void ppc_adjtimex(void)
        }
        
 #ifdef DEBUG_PPC_ADJTIMEX
-       printk("ppc_adjtimex: ltemp = %ld, time_freq = %ld, singleshot_ppm = 
%ld\n", ltemp, time_freq, singleshot_ppm);
+       printk("ppc_adjtimex: ltemp = %ld, ntp_freq = %ld, singleshot_ppm = 
%ld\n", ltemp, ntp_freq, singleshot_ppm);
        printk("ppc_adjtimex: tb_ticks_per_sec - base = %ld  new = %ld\n", 
tb_ticks_per_sec, new_tb_ticks_per_sec);
 #endif
                                
diff --git a/arch/sparc/kernel/pcic.c b/arch/sparc/kernel/pcic.c
--- a/arch/sparc/kernel/pcic.c
+++ b/arch/sparc/kernel/pcic.c
@@ -783,11 +783,11 @@ static void pci_do_gettimeofday(struct t
                lost = jiffies - wall_jiffies;
 
                /*
-                * If time_adjust is negative then NTP is slowing the clock
+                * If ntp_adjtime_offset is negative then NTP is slowing the 
clock
                 * so make sure not to go into next possible interval.
                 * Better to lose some accuracy than have time go backwards..
                 */
-               if (unlikely(time_adjust < 0)) {
+               if (unlikely(ntp_adjtime_offset < 0)) {
                        usec = min(usec, max_ntp_tick);
 
                        if (lost)
diff --git a/arch/sparc/kernel/time.c b/arch/sparc/kernel/time.c
--- a/arch/sparc/kernel/time.c
+++ b/arch/sparc/kernel/time.c
@@ -492,11 +492,11 @@ void do_gettimeofday(struct timeval *tv)
                lost = jiffies - wall_jiffies;
 
                /*
-                * If time_adjust is negative then NTP is slowing the clock
+                * If ntp_adjtime_offset is negative then NTP is slowing the 
clock
                 * so make sure not to go into next possible interval.
                 * Better to lose some accuracy than have time go backwards..
                 */
-               if (unlikely(time_adjust < 0)) {
+               if (unlikely(ntp_adjtime_offset < 0)) {
                        usec = min(usec, max_ntp_tick);
 
                        if (lost)
diff --git a/include/linux/ntp.h b/include/linux/ntp.h
--- a/include/linux/ntp.h
+++ b/include/linux/ntp.h
@@ -20,9 +20,9 @@ int ntp_synced(void);
  * these variables cannot be made static just yet
  */
 extern int tickadj;
-extern long time_offset;
-extern long time_freq;
-extern long time_adjust;
-extern long time_constant;
+extern long ntp_offset;
+extern long ntp_freq;
+extern long ntp_adjtime_offset;
+extern long ntp_constant;
 
 #endif
diff --git a/kernel/ntp.c b/kernel/ntp.c
--- a/kernel/ntp.c
+++ b/kernel/ntp.c
@@ -47,26 +47,28 @@
 
 /* Don't completely fail for HZ > 500.  */
 int tickadj = 500/HZ ? : 1;            /* microsecs */
-
-/*
- * phase-lock loop variables
- */
-/* TIME_ERROR prevents overwriting the CMOS clock */
-static int time_state = TIME_OK;              /* clock synchronization status 
*/
-static int time_status = STA_UNSYNC;          /* clock status bits */
-long time_offset;                      /* time adjustment (us) */
-long time_constant = 2;                /* pll time constant */
-static long time_tolerance = MAXFREQ;         /* frequency tolerance (ppm) */
-static long time_precision = 1;               /* clock precision (us) */
-static long time_maxerror = NTP_PHASE_LIMIT;  /* maximum error (us) */
-static long time_esterror = NTP_PHASE_LIMIT;  /* estimated error (us) */
-static long time_phase;                       /* phase offset (scaled us) */
-long time_freq = (((NSEC_PER_SEC + HZ/2) % HZ - HZ/2) << SHIFT_USEC) / 
NSEC_PER_USEC;
-                                        /* frequency offset (scaled ppm) */
+static long time_phase;                 /* phase offset (scaled us) */
 static long time_adj;                   /* tick adjust (scaled 1 / HZ) */
-static long time_reftime;                      /* time at last adjustment (s) 
*/
-long time_adjust;
-static long time_next_adjust;
+
+/* Chapter 5: Kernel Variables [RFC 1589 pg. 28] */
+/* 5.1 Interface Variables */
+static int ntp_status = STA_UNSYNC;             /* status */
+long ntp_offset;                                /* usec */
+long ntp_constant = 2;                          /* ntp magic? */
+static long ntp_maxerror = NTP_PHASE_LIMIT;     /* usec */
+static long ntp_esterror = NTP_PHASE_LIMIT;     /* usec */
+static const long ntp_tolerance        = MAXFREQ;      /* shifted ppm */
+static const long ntp_precision        = 1;            /* constant */
+
+/* 5.2 Phase-Lock Loop Variables */
+long ntp_freq;                                  /* shifted ppm */
+static long ntp_reftime;                        /* sec */
+
+/* Extra values */
+static int ntp_state    = TIME_OK;              /* leapsecond state */
+long ntp_adjtime_offset;
+static long ntp_next_adjtime_offset;
+
 
 #define SEC_PER_DAY 86400
 
@@ -92,10 +94,10 @@ int ntp_advance(unsigned long interval_n
                interval_sum -= NSEC_PER_SEC;
 
                /* Bump the maxerror field */
-               time_maxerror += time_tolerance >> SHIFT_USEC;
-               if ( time_maxerror > NTP_PHASE_LIMIT ) {
-                       time_maxerror = NTP_PHASE_LIMIT;
-                       time_status |= STA_UNSYNC;
+               ntp_maxerror += shiftR(ntp_tolerance, SHIFT_USEC);
+               if (ntp_maxerror > NTP_PHASE_LIMIT) {
+                       ntp_maxerror = NTP_PHASE_LIMIT;
+                       ntp_status |= STA_UNSYNC;
                }
 
                /*
@@ -107,16 +109,16 @@ int ntp_advance(unsigned long interval_n
                 * the adjustment over not more than the number of
                 * seconds between updates.
                 */
-               next_adj = time_offset;
-               if (!(time_status & STA_FLL))
-                       next_adj = shiftR(next_adj, SHIFT_KG + time_constant);
+               next_adj = ntp_offset;
+               if (!(ntp_status & STA_FLL))
+                       next_adj = shiftR(next_adj, SHIFT_KG + ntp_constant);
                next_adj = min(next_adj, (MAXPHASE / MINSEC) << SHIFT_UPDATE);
                next_adj = max(next_adj, -(MAXPHASE / MINSEC) << SHIFT_UPDATE);
-               time_offset -= next_adj;
+               ntp_offset -= next_adj;
 
                time_adj = next_adj << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
 
-               time_adj += shiftR(time_freq, (SHIFT_USEC + SHIFT_HZ - 
SHIFT_SCALE));
+               time_adj += shiftR(ntp_freq, (SHIFT_USEC + SHIFT_HZ - 
SHIFT_SCALE));
 
 #if HZ == 100
        /* Compensate for (HZ==100) != (1 << SHIFT_HZ).
@@ -136,23 +138,23 @@ int ntp_advance(unsigned long interval_n
        }
 
 
-       if ( (time_adjust_step = time_adjust) != 0 ) {
+       if ( (time_adjust_step = ntp_adjtime_offset) != 0 ) {
            /* We are doing an adjtime thing.
             *
             * Prepare time_adjust_step to be within bounds.
-            * Note that a positive time_adjust means we want the clock
+            * Note that a positive ntp_adjtime_offset means we want the clock
             * to run faster.
             *
             * Limit the amount of the step to be in the range
             * -tickadj .. +tickadj
             */
-               if (time_adjust > tickadj)
+               if (ntp_adjtime_offset > tickadj)
                        time_adjust_step = tickadj;
-               else if (time_adjust < -tickadj)
+               else if (ntp_adjtime_offset < -tickadj)
                        time_adjust_step = -tickadj;
 
            /* Reduce by this step the amount of time left  */
-           time_adjust -= time_adjust_step;
+           ntp_adjtime_offset -= time_adjust_step;
        }
        delta_nsec = time_adjust_step * 1000;
 
@@ -172,9 +174,9 @@ int ntp_advance(unsigned long interval_n
        }
 
        /* Changes by adjtime() do not take effect till next tick. */
-       if (time_next_adjust != 0) {
-               time_adjust = time_next_adjust;
-               time_next_adjust = 0;
+       if (ntp_next_adjtime_offset != 0) {
+               ntp_adjtime_offset = ntp_next_adjtime_offset;
+               ntp_next_adjtime_offset = 0;
        }
 
        return delta_nsec;
@@ -197,51 +199,51 @@ static int ntp_hardupdate(long offset, s
        long current_offset, interval;
 
        ret = 0;
-       if (!(time_status & STA_PLL))
+       if (!(ntp_status & STA_PLL))
                return ret;
 
        current_offset = offset;
        /* Make sure offset is bounded by MAXPHASE */
        current_offset = min(current_offset, MAXPHASE);
        current_offset = max(current_offset, -MAXPHASE);
-       time_offset = current_offset << SHIFT_UPDATE;
+       ntp_offset = current_offset << SHIFT_UPDATE;
 
-       if (time_status & STA_FREQHOLD || time_reftime == 0)
-               time_reftime = tv.tv_sec;
+       if (ntp_status & STA_FREQHOLD || ntp_reftime == 0)
+               ntp_reftime = tv.tv_sec;
 
        /* calculate seconds since last call to hardupdate */
-       interval = tv.tv_sec - time_reftime;
-       time_reftime = tv.tv_sec;
+       interval = tv.tv_sec - ntp_reftime;
+       ntp_reftime = tv.tv_sec;
 
        /*
         * Select whether the frequency is to be controlled
         * and in which mode (PLL or FLL). Clamp to the operating
         * range. Ugly multiply/divide should be replaced someday.
         */
-       if ((time_status & STA_FLL) && (interval >= MINSEC)) {
+       if ((ntp_status & STA_FLL) && (interval >= MINSEC)) {
                long offset_ppm;
 
-               offset_ppm = time_offset / interval;
+               offset_ppm = ntp_offset / interval;
                offset_ppm <<= (SHIFT_USEC - SHIFT_UPDATE);
 
-               time_freq += shiftR(offset_ppm, SHIFT_KH);
+               ntp_freq += shiftR(offset_ppm, SHIFT_KH);
 
-       } else if ((time_status & STA_PLL) && (interval < MAXSEC)) {
+       } else if ((ntp_status & STA_PLL) && (interval < MAXSEC)) {
                long damping, offset_ppm;
 
                offset_ppm = offset * interval;
 
-               damping = (2 * time_constant) + SHIFT_KF - SHIFT_USEC;
+               damping = (2 * ntp_constant) + SHIFT_KF - SHIFT_USEC;
 
-               time_freq += shiftR(offset_ppm, damping);
+               ntp_freq += shiftR(offset_ppm, damping);
 
        } else { /* calibration interval out of bounds (p. 12) */
                ret = TIME_ERROR;
        }
 
-       /* bound time_freq */
-       time_freq = min(time_freq, time_tolerance);
-       time_freq = max(time_freq, -time_tolerance);
+       /* bound ntp_freq */
+       ntp_freq = min(ntp_freq, ntp_tolerance);
+       ntp_freq = max(ntp_freq, -ntp_tolerance);
 
        return ret;
 }
@@ -297,34 +299,34 @@ int ntp_adjtimex(struct timex *txc)
                return -EINVAL;
 
        write_seqlock_irq(&xtime_lock);
-       result = time_state;       /* mostly `TIME_OK' */
+       result = ntp_state;       /* mostly `TIME_OK' */
 
        /* Save for later - semantics of adjtime is to return old value */
-       save_adjust = time_next_adjust ? time_next_adjust : time_adjust;
+       save_adjust = ntp_next_adjtime_offset ? ntp_next_adjtime_offset : 
ntp_adjtime_offset;
 
        /* If there are input parameters, then process them */
 
        if (txc->modes & ADJ_STATUS)    /* only set allowed bits */
-               time_status = (txc->status & ~STA_RONLY) |
-                               (time_status & STA_RONLY);
+               ntp_status = (txc->status & ~STA_RONLY) |
+                               (ntp_status & STA_RONLY);
 
        if (txc->modes & ADJ_FREQUENCY)
-               time_freq = txc->freq;
+               ntp_freq = txc->freq;
 
        if (txc->modes & ADJ_MAXERROR)
-               time_maxerror = txc->maxerror;
+               ntp_maxerror = txc->maxerror;
 
        if (txc->modes & ADJ_ESTERROR)
-               time_esterror = txc->esterror;
+               ntp_esterror = txc->esterror;
 
        if (txc->modes & ADJ_TIMECONST)
-               time_constant = txc->constant;
+               ntp_constant = txc->constant;
 
        if (txc->modes & ADJ_OFFSET) {
                if (txc->modes == ADJ_OFFSET_SINGLESHOT) {
                        /* adjtime() is independent from ntp_adjtime() */
-                       if ((time_next_adjust = txc->offset) == 0)
-                               time_adjust = 0;
+                       if ((ntp_next_adjtime_offset = txc->offset) == 0)
+                               ntp_adjtime_offset = 0;
                } else if (ntp_hardupdate(txc->offset, xtime))
                        result = TIME_ERROR;
        }
@@ -334,23 +336,22 @@ int ntp_adjtimex(struct timex *txc)
                tick_nsec = TICK_USEC_TO_NSEC(tick_usec);
        }
 
-       if ((time_status & (STA_UNSYNC|STA_CLOCKERR)) != 0)
+       if ((ntp_status & (STA_UNSYNC|STA_CLOCKERR)) != 0)
                result = TIME_ERROR;
 
        /* write kernel state to user timex values*/
-
        if ((txc->modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT)
                txc->offset = save_adjust;
-       else {
-               txc->offset = shiftR(time_offset, SHIFT_UPDATE);
-       }
-       txc->freq = time_freq;
-       txc->maxerror = time_maxerror;
-       txc->esterror = time_esterror;
-       txc->status = time_status;
-       txc->constant = time_constant;
-       txc->precision = time_precision;
-       txc->tolerance = time_tolerance;
+       else
+               txc->offset = shiftR(ntp_offset, SHIFT_UPDATE);
+
+       txc->freq = ntp_freq;
+       txc->maxerror = ntp_maxerror;
+       txc->esterror = ntp_esterror;
+       txc->status = ntp_status;
+       txc->constant = ntp_constant;
+       txc->precision = ntp_precision;
+       txc->tolerance = ntp_tolerance;
        txc->tick = tick_usec;
 
        /* PPS is not implemented, so these are zero */
@@ -387,12 +388,12 @@ int ntp_leapsecond(struct timespec now)
         */
        static time_t leaptime = 0;
 
-       switch (time_state) {
+       switch (ntp_state) {
        case TIME_OK:
-               if (time_status & STA_INS)
-                       time_state = TIME_INS;
-               else if (time_status & STA_DEL)
-                       time_state = TIME_DEL;
+               if (ntp_status & STA_INS)
+                       ntp_state = TIME_INS;
+               else if (ntp_status & STA_DEL)
+                       ntp_state = TIME_DEL;
 
                /* calculate end of today (23:59:59)*/
                leaptime = now.tv_sec + SEC_PER_DAY -
@@ -402,7 +403,7 @@ int ntp_leapsecond(struct timespec now)
        case TIME_INS:
                /* Once we are at (or past) leaptime, insert the second */
                if (now.tv_sec >= leaptime) {
-                       time_state = TIME_OOP;
+                       ntp_state = TIME_OOP;
                        printk(KERN_NOTICE "Clock: inserting leap second 
23:59:60 UTC\n");
                        return -1;
                }
@@ -411,7 +412,7 @@ int ntp_leapsecond(struct timespec now)
        case TIME_DEL:
                /* Once we are at (or past) leaptime, delete the second */
                if (now.tv_sec >= leaptime) {
-                       time_state = TIME_WAIT;
+                       ntp_state = TIME_WAIT;
                        printk(KERN_NOTICE "Clock: deleting leap second 
23:59:59 UTC\n");
                        return 1;
                }
@@ -420,12 +421,12 @@ int ntp_leapsecond(struct timespec now)
        case TIME_OOP:
                /*  Wait for the end of the leap second*/
                if (now.tv_sec > (leaptime + 1))
-                       time_state = TIME_WAIT;
+                       ntp_state = TIME_WAIT;
                break;
 
        case TIME_WAIT:
-               if (!(time_status & (STA_INS | STA_DEL)))
-                       time_state = TIME_OK;
+               if (!(ntp_status & (STA_INS | STA_DEL)))
+                       ntp_state = TIME_OK;
        }
 
        return 0;
@@ -439,10 +440,10 @@ int ntp_leapsecond(struct timespec now)
  */
 void ntp_clear(void)
 {
-       time_adjust = 0;                /* stop active adjtime() */
-       time_status |= STA_UNSYNC;
-       time_maxerror = NTP_PHASE_LIMIT;
-       time_esterror = NTP_PHASE_LIMIT;
+       ntp_next_adjtime_offset = 0;            /* stop active adjtime() */
+       ntp_status |= STA_UNSYNC;
+       ntp_maxerror = NTP_PHASE_LIMIT;
+       ntp_esterror = NTP_PHASE_LIMIT;
 }
 
 /**
@@ -451,6 +452,6 @@ void ntp_clear(void)
  */
 int ntp_synced(void)
 {
-       return !(time_status & STA_UNSYNC);
+       return !(ntp_status & STA_UNSYNC);
 }
 


-
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to [EMAIL PROTECTED]
More majordomo info at  http://vger.kernel.org/majordomo-info.html
Please read the FAQ at  http://www.tux.org/lkml/

Reply via email to