On 2023/10/17 21:56, wuqiang.matt wrote: > objpool is a scalable implementation of high performance queue for > object allocation and reclamation, such as kretprobe instances. > > With leveraging percpu ring-array to mitigate hot spots of memory > contention, it delivers near-linear scalability for high parallel > scenarios. The objpool is best suited for the following cases: > 1) Memory allocation or reclamation are prohibited or too expensive > 2) Consumers are of different priorities, such as irqs and threads > > Limitations: > 1) Maximum objects (capacity) is fixed after objpool creation > 2) All pre-allocated objects are managed in percpu ring array, > which consumes more memory than linked lists > I'm curious why not just extend the existing lockless freelist to percpu lockless freelists? And the percpu freelist is more flexible to use than this percpu ring-array? The latter has to be fixed size when creation.
Thanks. > Signed-off-by: wuqiang.matt <wuqiang.m...@bytedance.com> > --- > include/linux/objpool.h | 176 +++++++++++++++++++++++++ > lib/Makefile | 2 +- > lib/objpool.c | 286 ++++++++++++++++++++++++++++++++++++++++ > 3 files changed, 463 insertions(+), 1 deletion(-) > create mode 100644 include/linux/objpool.h > create mode 100644 lib/objpool.c > > diff --git a/include/linux/objpool.h b/include/linux/objpool.h > new file mode 100644 > index 000000000000..4df18405420a > --- /dev/null > +++ b/include/linux/objpool.h > @@ -0,0 +1,181 @@ > +/* SPDX-License-Identifier: GPL-2.0 */ > + > +#ifndef _LINUX_OBJPOOL_H > +#define _LINUX_OBJPOOL_H > + > +#include <linux/types.h> > +#include <linux/refcount.h> > + > +/* > + * objpool: ring-array based lockless MPMC queue > + * > + * Copyright: wuqiang.m...@bytedance.com,mhira...@kernel.org > + * > + * objpool is a scalable implementation of high performance queue for > + * object allocation and reclamation, such as kretprobe instances. > + * > + * With leveraging percpu ring-array to mitigate hot spots of memory > + * contention, it delivers near-linear scalability for high parallel > + * scenarios. The objpool is best suited for the following cases: > + * 1) Memory allocation or reclamation are prohibited or too expensive > + * 2) Consumers are of different priorities, such as irqs and threads > + * > + * Limitations: > + * 1) Maximum objects (capacity) is fixed after objpool creation > + * 2) All pre-allocated objects are managed in percpu ring array, > + * which consumes more memory than linked lists > + */ > + > +/** > + * struct objpool_slot - percpu ring array of objpool > + * @head: head sequence of the local ring array (to retrieve at) > + * @tail: tail sequence of the local ring array (to append at) > + * @last: the last sequence number marked as ready for retrieve > + * @mask: bits mask for modulo capacity to compute array indexes > + * @entries: object entries on this slot > + * > + * Represents a cpu-local array-based ring buffer, its size is specialized > + * during initialization of object pool. The percpu objpool node is to be > + * allocated from local memory for NUMA system, and to be kept compact in > + * continuous memory: CPU assigned number of objects are stored just after > + * the body of objpool_node. > + * > + * Real size of the ring array is far too smaller than the value range of > + * head and tail, typed as uint32_t: [0, 2^32), so only lower bits (mask) > + * of head and tail are used as the actual position in the ring array. In > + * general the ring array is acting like a small sliding window, which is > + * always moving forward in the loop of [0, 2^32). > + */ > +struct objpool_slot { > + uint32_t head; > + uint32_t tail; > + uint32_t last; > + uint32_t mask; > + void *entries[]; > +} __packed; > + > +struct objpool_head; > + > +/* > + * caller-specified callback for object initial setup, it's only called > + * once for each object (just after the memory allocation of the object) > + */ > +typedef int (*objpool_init_obj_cb)(void *obj, void *context); > + > +/* caller-specified cleanup callback for objpool destruction */ > +typedef int (*objpool_fini_cb)(struct objpool_head *head, void *context); > + > +/** > + * struct objpool_head - object pooling metadata > + * @obj_size: object size, aligned to sizeof(void *) > + * @nr_objs: total objs (to be pre-allocated with objpool) > + * @nr_cpus: local copy of nr_cpu_ids > + * @capacity: max objs can be managed by one objpool_slot > + * @gfp: gfp flags for kmalloc & vmalloc > + * @ref: refcount of objpool > + * @flags: flags for objpool management > + * @cpu_slots: pointer to the array of objpool_slot > + * @release: resource cleanup callback > + * @context: caller-provided context > + */ > +struct objpool_head { > + int obj_size; > + int nr_objs; > + int nr_cpus; > + int capacity; > + gfp_t gfp; > + refcount_t ref; > + unsigned long flags; > + struct objpool_slot **cpu_slots; > + objpool_fini_cb release; > + void *context; > +}; > + > +#define OBJPOOL_NR_OBJECT_MAX (1UL << 24) /* maximum numbers of total > objects */ > +#define OBJPOOL_OBJECT_SIZE_MAX (1UL << 16) /* maximum size of an > object */ > + > +/** > + * objpool_init() - initialize objpool and pre-allocated objects > + * @pool: the object pool to be initialized, declared by caller > + * @nr_objs: total objects to be pre-allocated by this object pool > + * @object_size: size of an object (should be > 0) > + * @gfp: flags for memory allocation (via kmalloc or vmalloc) > + * @context: user context for object initialization callback > + * @objinit: object initialization callback for extra setup > + * @release: cleanup callback for extra cleanup task > + * > + * return value: 0 for success, otherwise error code > + * > + * All pre-allocated objects are to be zeroed after memory allocation. > + * Caller could do extra initialization in objinit callback. objinit() > + * will be called just after slot allocation and called only once for > + * each object. After that the objpool won't touch any content of the > + * objects. It's caller's duty to perform reinitialization after each > + * pop (object allocation) or do clearance before each push (object > + * reclamation). > + */ > +int objpool_init(struct objpool_head *pool, int nr_objs, int object_size, > + gfp_t gfp, void *context, objpool_init_obj_cb objinit, > + objpool_fini_cb release); > + > +/** > + * objpool_pop() - allocate an object from objpool > + * @pool: object pool > + * > + * return value: object ptr or NULL if failed > + */ > +void *objpool_pop(struct objpool_head *pool); > + > +/** > + * objpool_push() - reclaim the object and return back to objpool > + * @obj: object ptr to be pushed to objpool > + * @pool: object pool > + * > + * return: 0 or error code (it fails only when user tries to push > + * the same object multiple times or wrong "objects" into objpool) > + */ > +int objpool_push(void *obj, struct objpool_head *pool); > + > +/** > + * objpool_drop() - discard the object and deref objpool > + * @obj: object ptr to be discarded > + * @pool: object pool > + * > + * return: 0 if objpool was released; -EAGAIN if there are still > + * outstanding objects > + * > + * objpool_drop is normally for the release of outstanding objects > + * after objpool cleanup (objpool_fini). Thinking of this example: > + * kretprobe is unregistered and objpool_fini() is called to release > + * all remained objects, but there are still objects being used by > + * unfinished kretprobes (like blockable function: sys_accept). So > + * only when the last outstanding object is dropped could the whole > + * objpool be released along with the call of objpool_drop() > + */ > +int objpool_drop(void *obj, struct objpool_head *pool); > + > +/** > + * objpool_free() - release objpool forcely (all objects to be freed) > + * @pool: object pool to be released > + */ > +void objpool_free(struct objpool_head *pool); > + > +/** > + * objpool_fini() - deref object pool (also releasing unused objects) > + * @pool: object pool to be dereferenced > + * > + * objpool_fini() will try to release all remained free objects and > + * then drop an extra reference of the objpool. If all objects are > + * already returned to objpool (so called synchronous use cases), > + * the objpool itself will be freed together. But if there are still > + * outstanding objects (so called asynchronous use cases, such like > + * blockable kretprobe), the objpool won't be released until all > + * the outstanding objects are dropped, but the caller must assure > + * there are no concurrent objpool_push() on the fly. Normally RCU > + * is being required to make sure all ongoing objpool_push() must > + * be finished before calling objpool_fini(), so does test_objpool, > + * kretprobe or rethook > + */ > +void objpool_fini(struct objpool_head *pool); > + > +#endif /* _LINUX_OBJPOOL_H */ > diff --git a/lib/Makefile b/lib/Makefile > index 1ffae65bb7ee..7a84c922d9ff 100644 > --- a/lib/Makefile > +++ b/lib/Makefile > @@ -34,7 +34,7 @@ lib-y := ctype.o string.o vsprintf.o cmdline.o \ > is_single_threaded.o plist.o decompress.o kobject_uevent.o \ > earlycpio.o seq_buf.o siphash.o dec_and_lock.o \ > nmi_backtrace.o win_minmax.o memcat_p.o \ > - buildid.o > + buildid.o objpool.o > > lib-$(CONFIG_PRINTK) += dump_stack.o > lib-$(CONFIG_SMP) += cpumask.o > diff --git a/lib/objpool.c b/lib/objpool.c > new file mode 100644 > index 000000000000..37a71e063f18 > --- /dev/null > +++ b/lib/objpool.c > @@ -0,0 +1,280 @@ > +// SPDX-License-Identifier: GPL-2.0 > + > +#include <linux/objpool.h> > +#include <linux/slab.h> > +#include <linux/vmalloc.h> > +#include <linux/atomic.h> > +#include <linux/irqflags.h> > +#include <linux/cpumask.h> > +#include <linux/log2.h> > + > +/* > + * objpool: ring-array based lockless MPMC/FIFO queues > + * > + * Copyright: wuqiang.m...@bytedance.com,mhira...@kernel.org > + */ > + > +/* initialize percpu objpool_slot */ > +static int > +objpool_init_percpu_slot(struct objpool_head *pool, > + struct objpool_slot *slot, > + int nodes, void *context, > + objpool_init_obj_cb objinit) > +{ > + void *obj = (void *)&slot->entries[pool->capacity]; > + int i; > + > + /* initialize elements of percpu objpool_slot */ > + slot->mask = pool->capacity - 1; > + > + for (i = 0; i < nodes; i++) { > + if (objinit) { > + int rc = objinit(obj, context); > + if (rc) > + return rc; > + } > + slot->entries[slot->tail & slot->mask] = obj; > + obj = obj + pool->obj_size; > + slot->tail++; > + slot->last = slot->tail; > + pool->nr_objs++; > + } > + > + return 0; > +} > + > +/* allocate and initialize percpu slots */ > +static int > +objpool_init_percpu_slots(struct objpool_head *pool, int nr_objs, > + void *context, objpool_init_obj_cb objinit) > +{ > + int i, cpu_count = 0; > + > + for (i = 0; i < pool->nr_cpus; i++) { > + > + struct objpool_slot *slot; > + int nodes, size, rc; > + > + /* skip the cpu node which could never be present */ > + if (!cpu_possible(i)) > + continue; > + > + /* compute how many objects to be allocated with this slot */ > + nodes = nr_objs / num_possible_cpus(); > + if (cpu_count < (nr_objs % num_possible_cpus())) > + nodes++; > + cpu_count++; > + > + size = struct_size(slot, entries, pool->capacity) + > + pool->obj_size * nodes; > + > + /* > + * here we allocate percpu-slot & objs together in a single > + * allocation to make it more compact, taking advantage of > + * warm caches and TLB hits. in default vmalloc is used to > + * reduce the pressure of kernel slab system. as we know, > + * mimimal size of vmalloc is one page since vmalloc would > + * always align the requested size to page size > + */ > + if (pool->gfp & GFP_ATOMIC) > + slot = kmalloc_node(size, pool->gfp, cpu_to_node(i)); > + else > + slot = __vmalloc_node(size, sizeof(void *), pool->gfp, > + cpu_to_node(i), __builtin_return_address(0)); > + if (!slot) > + return -ENOMEM; > + memset(slot, 0, size); > + pool->cpu_slots[i] = slot; > + > + /* initialize the objpool_slot of cpu node i */ > + rc = objpool_init_percpu_slot(pool, slot, nodes, context, > objinit); > + if (rc) > + return rc; > + } > + > + return 0; > +} > + > +/* cleanup all percpu slots of the object pool */ > +static void objpool_fini_percpu_slots(struct objpool_head *pool) > +{ > + int i; > + > + if (!pool->cpu_slots) > + return; > + > + for (i = 0; i < pool->nr_cpus; i++) > + kvfree(pool->cpu_slots[i]); > + kfree(pool->cpu_slots); > +} > + > +/* initialize object pool and pre-allocate objects */ > +int objpool_init(struct objpool_head *pool, int nr_objs, int object_size, > + gfp_t gfp, void *context, objpool_init_obj_cb objinit, > + objpool_fini_cb release) > +{ > + int rc, capacity, slot_size; > + > + /* check input parameters */ > + if (nr_objs <= 0 || nr_objs > OBJPOOL_NR_OBJECT_MAX || > + object_size <= 0 || object_size > OBJPOOL_OBJECT_SIZE_MAX) > + return -EINVAL; > + > + /* align up to unsigned long size */ > + object_size = ALIGN(object_size, sizeof(long)); > + > + /* calculate capacity of percpu objpool_slot */ > + capacity = roundup_pow_of_two(nr_objs); > + if (!capacity) > + return -EINVAL; > + > + /* initialize objpool pool */ > + memset(pool, 0, sizeof(struct objpool_head)); > + pool->nr_cpus = nr_cpu_ids; > + pool->obj_size = object_size; > + pool->capacity = capacity; > + pool->gfp = gfp & ~__GFP_ZERO; > + pool->context = context; > + pool->release = release; > + slot_size = pool->nr_cpus * sizeof(struct objpool_slot); > + pool->cpu_slots = kzalloc(slot_size, pool->gfp); > + if (!pool->cpu_slots) > + return -ENOMEM; > + > + /* initialize per-cpu slots */ > + rc = objpool_init_percpu_slots(pool, nr_objs, context, objinit); > + if (rc) > + objpool_fini_percpu_slots(pool); > + else > + refcount_set(&pool->ref, pool->nr_objs + 1); > + > + return rc; > +} > +EXPORT_SYMBOL_GPL(objpool_init); > + > +/* adding object to slot, abort if the slot was already full */ > +static inline int > +objpool_try_add_slot(void *obj, struct objpool_head *pool, int cpu) > +{ > + struct objpool_slot *slot = pool->cpu_slots[cpu]; > + uint32_t head, tail; > + > + /* loading tail and head as a local snapshot, tail first */ > + tail = READ_ONCE(slot->tail); > + > + do { > + head = READ_ONCE(slot->head); > + /* fault caught: something must be wrong */ > + WARN_ON_ONCE(tail - head > pool->nr_objs); > + } while (!try_cmpxchg_acquire(&slot->tail, &tail, tail + 1)); > + > + /* now the tail position is reserved for the given obj */ > + WRITE_ONCE(slot->entries[tail & slot->mask], obj); > + /* update sequence to make this obj available for pop() */ > + smp_store_release(&slot->last, tail + 1); > + > + return 0; > +} > + > +/* reclaim an object to object pool */ > +int objpool_push(void *obj, struct objpool_head *pool) > +{ > + unsigned long flags; > + int rc; > + > + /* disable local irq to avoid preemption & interruption */ > + raw_local_irq_save(flags); > + rc = objpool_try_add_slot(obj, pool, raw_smp_processor_id()); > + raw_local_irq_restore(flags); > + > + return rc; > +} > +EXPORT_SYMBOL_GPL(objpool_push); > + > +/* try to retrieve object from slot */ > +static inline void *objpool_try_get_slot(struct objpool_head *pool, int cpu) > +{ > + struct objpool_slot *slot = pool->cpu_slots[cpu]; > + /* load head snapshot, other cpus may change it */ > + uint32_t head = smp_load_acquire(&slot->head); > + > + while (head != READ_ONCE(slot->last)) { > + void *obj; > + > + /* obj must be retrieved before moving forward head */ > + obj = READ_ONCE(slot->entries[head & slot->mask]); > + > + /* move head forward to mark it's consumption */ > + if (try_cmpxchg_release(&slot->head, &head, head + 1)) > + return obj; > + } > + > + return NULL; > +} > + > +/* allocate an object from object pool */ > +void *objpool_pop(struct objpool_head *pool) > +{ > + void *obj = NULL; > + unsigned long flags; > + int i, cpu; > + > + /* disable local irq to avoid preemption & interruption */ > + raw_local_irq_save(flags); > + > + cpu = raw_smp_processor_id(); > + for (i = 0; i < num_possible_cpus(); i++) { > + obj = objpool_try_get_slot(pool, cpu); > + if (obj) > + break; > + cpu = cpumask_next_wrap(cpu, cpu_possible_mask, -1, 1); > + } > + raw_local_irq_restore(flags); > + > + return obj; > +} > +EXPORT_SYMBOL_GPL(objpool_pop); > + > +/* release whole objpool forcely */ > +void objpool_free(struct objpool_head *pool) > +{ > + if (!pool->cpu_slots) > + return; > + > + /* release percpu slots */ > + objpool_fini_percpu_slots(pool); > + > + /* call user's cleanup callback if provided */ > + if (pool->release) > + pool->release(pool, pool->context); > +} > +EXPORT_SYMBOL_GPL(objpool_free); > + > +/* drop the allocated object, rather reclaim it to objpool */ > +int objpool_drop(void *obj, struct objpool_head *pool) > +{ > + if (!obj || !pool) > + return -EINVAL; > + > + if (refcount_dec_and_test(&pool->ref)) { > + objpool_free(pool); > + return 0; > + } > + > + return -EAGAIN; > +} > +EXPORT_SYMBOL_GPL(objpool_drop); > + > +/* drop unused objects and defref objpool for releasing */ > +void objpool_fini(struct objpool_head *pool) > +{ > + int count = 1; /* extra ref for objpool itself */ > + > + /* drop all remained objects from objpool */ > + while (objpool_pop(pool)) > + count++; > + > + if (refcount_sub_and_test(count, &pool->ref)) > + objpool_free(pool); > +} > +EXPORT_SYMBOL_GPL(objpool_fini);