From: Sam Tebbs <sam.te...@arm.com>

Import latest version of Cortex Strings' strncmp function.

The upstream source is src/aarch64/strncmp.S as of commit 071fe283b28d
in https://git.linaro.org/toolchain/cortex-strings.git.

Signed-off-by: Sam Tebbs <sam.te...@arm.com>
[ rm: update attribution, expand commit message ]
Signed-off-by: Robin Murphy <robin.mur...@arm.com>
Signed-off-by: Oliver Swede <oli.sw...@arm.com>
---
 arch/arm64/lib/strncmp.S | 363 ++++++++++++++++++---------------------
 1 file changed, 163 insertions(+), 200 deletions(-)

diff --git a/arch/arm64/lib/strncmp.S b/arch/arm64/lib/strncmp.S
index 2a7ee949ed47..b954e0fd93be 100644
--- a/arch/arm64/lib/strncmp.S
+++ b/arch/arm64/lib/strncmp.S
@@ -1,13 +1,11 @@
 /* SPDX-License-Identifier: GPL-2.0-only */
 /*
- * Copyright (C) 2013 ARM Ltd.
- * Copyright (C) 2013 Linaro.
+ * Copyright (c) 2013,2018 Linaro Limited. All rights reserved.
  *
- * This code is based on glibc cortex strings work originally authored by 
Linaro
- * be found @
+ * This code is based on glibc Cortex Strings work originally authored by
+ * Linaro, found at:
  *
- * http://bazaar.launchpad.net/~linaro-toolchain-dev/cortex-strings/trunk/
- * files/head:/src/aarch64/
+ * https://git.linaro.org/toolchain/cortex-strings.git
  */
 
 #include <linux/linkage.h>
@@ -30,49 +28,49 @@
 #define REP8_80 0x8080808080808080
 
 /* Parameters and result.  */
-src1           .req    x0
-src2           .req    x1
-limit          .req    x2
-result         .req    x0
+#define src1           x0
+#define src2           x1
+#define limit          x2
+#define result         x0
 
 /* Internal variables.  */
-data1          .req    x3
-data1w         .req    w3
-data2          .req    x4
-data2w         .req    w4
-has_nul                .req    x5
-diff           .req    x6
-syndrome       .req    x7
-tmp1           .req    x8
-tmp2           .req    x9
-tmp3           .req    x10
-zeroones       .req    x11
-pos            .req    x12
-limit_wd       .req    x13
-mask           .req    x14
-endloop                .req    x15
+#define data1          x3
+#define data1w         w3
+#define data2          x4
+#define data2w         w4
+#define has_nul                x5
+#define diff           x6
+#define syndrome       x7
+#define tmp1           x8
+#define tmp2           x9
+#define tmp3           x10
+#define zeroones       x11
+#define pos            x12
+#define limit_wd       x13
+#define mask           x14
+#define endloop                x15
+#define count          mask
 
+       .p2align 6
+       .rep 7
+       nop     /* Pad so that the loop below fits a cache line.  */
+       .endr
 SYM_FUNC_START_WEAK_PI(strncmp)
        cbz     limit, .Lret0
        eor     tmp1, src1, src2
        mov     zeroones, #REP8_01
        tst     tmp1, #7
+       and     count, src1, #7
        b.ne    .Lmisaligned8
-       ands    tmp1, src1, #7
-       b.ne    .Lmutual_align
+       cbnz    count, .Lmutual_align
        /* Calculate the number of full and partial words -1.  */
-       /*
-       * when limit is mulitply of 8, if not sub 1,
-       * the judgement of last dword will wrong.
-       */
-       sub     limit_wd, limit, #1 /* limit != 0, so no underflow.  */
-       lsr     limit_wd, limit_wd, #3  /* Convert to Dwords.  */
+       sub     limit_wd, limit, #1     /* limit != 0, so no underflow.  */
+       lsr     limit_wd, limit_wd, #3  /* Convert to Dwords.  */
 
-       /*
-       * NUL detection works on the principle that (X - 1) & (~X) & 0x80
-       * (=> (X - 1) & ~(X | 0x7f)) is non-zero iff a byte is zero, and
-       * can be done in parallel across the entire word.
-       */
+       /* NUL detection works on the principle that (X - 1) & (~X) & 0x80
+          (=> (X - 1) & ~(X | 0x7f)) is non-zero iff a byte is zero, and
+          can be done in parallel across the entire word.  */
+       /* Start of performance-critical section  -- one 64B cache line.  */
 .Lloop_aligned:
        ldr     data1, [src1], #8
        ldr     data2, [src2], #8
@@ -80,23 +78,24 @@ SYM_FUNC_START_WEAK_PI(strncmp)
        subs    limit_wd, limit_wd, #1
        sub     tmp1, data1, zeroones
        orr     tmp2, data1, #REP8_7f
-       eor     diff, data1, data2  /* Non-zero if differences found.  */
-       csinv   endloop, diff, xzr, pl  /* Last Dword or differences.*/
-       bics    has_nul, tmp1, tmp2 /* Non-zero if NUL terminator.  */
+       eor     diff, data1, data2      /* Non-zero if differences found.  */
+       csinv   endloop, diff, xzr, pl  /* Last Dword or differences.  */
+       bics    has_nul, tmp1, tmp2     /* Non-zero if NUL terminator.  */
        ccmp    endloop, #0, #0, eq
        b.eq    .Lloop_aligned
+       /* End of performance-critical section  -- one 64B cache line.  */
 
-       /*Not reached the limit, must have found the end or a diff.  */
+       /* Not reached the limit, must have found the end or a diff.  */
        tbz     limit_wd, #63, .Lnot_limit
 
        /* Limit % 8 == 0 => all bytes significant.  */
        ands    limit, limit, #7
        b.eq    .Lnot_limit
 
-       lsl     limit, limit, #3    /* Bits -> bytes.  */
+       lsl     limit, limit, #3        /* Bits -> bytes.  */
        mov     mask, #~0
-CPU_BE( lsr    mask, mask, limit )
-CPU_LE( lsl    mask, mask, limit )
+CPU_BE(lsr     mask, mask, limit)
+CPU_LE(lsl     mask, mask, limit)
        bic     data1, data1, mask
        bic     data2, data2, mask
 
@@ -105,192 +104,156 @@ CPU_LE( lsl     mask, mask, limit )
 
 .Lnot_limit:
        orr     syndrome, diff, has_nul
-       b       .Lcal_cmpresult
+
+       CPU_LE(rev      syndrome, syndrome)
+       CPU_LE(rev      data1, data1)
+       /* The MS-non-zero bit of the syndrome marks either the first bit
+          that is different, or the top bit of the first zero byte.
+          Shifting left now will bring the critical information into the
+          top bits.  */
+       CPU_LE(clz      pos, syndrome)
+       CPU_LE(rev      data2, data2)
+       CPU_LE(lsl      data1, data1, pos)
+       CPU_LE(lsl      data2, data2, pos)
+       /* But we need to zero-extend (char is unsigned) the value and then
+          perform a signed 32-bit subtraction.  */
+       CPU_LE(lsr      data1, data1, #56)
+       CPU_LE(sub      result, data1, data2, lsr #56)
+       CPU_LE(ret)
+       /* For big-endian we cannot use the trick with the syndrome value
+          as carry-propagation can corrupt the upper bits if the trailing
+          bytes in the string contain 0x01.  */
+       /* However, if there is no NUL byte in the dword, we can generate
+          the result directly.  We can't just subtract the bytes as the
+          MSB might be significant.  */
+       CPU_BE(cbnz     has_nul, 1f)
+       CPU_BE(cmp      data1, data2)
+       CPU_BE(cset     result, ne)
+       CPU_BE(cneg     result, result, lo)
+       CPU_BE(ret)
+1:
+       /* Re-compute the NUL-byte detection, using a byte-reversed value.  */
+       CPU_BE(rev      tmp3, data1)
+       CPU_BE(sub      tmp1, tmp3, zeroones)
+       CPU_BE(orr      tmp2, tmp3, #REP8_7f)
+       CPU_BE(bic      has_nul, tmp1, tmp2)
+       CPU_BE(rev      has_nul, has_nul)
+       CPU_BE(orr      syndrome, diff, has_nul)
+       CPU_BE(clz      pos, syndrome)
+       /* The MS-non-zero bit of the syndrome marks either the first bit
+          that is different, or the top bit of the first zero byte.
+          Shifting left now will bring the critical information into the
+          top bits.  */
+       CPU_BE(lsl      data1, data1, pos)
+       CPU_BE(lsl      data2, data2, pos)
+       /* But we need to zero-extend (char is unsigned) the value and then
+          perform a signed 32-bit subtraction.  */
+       CPU_BE(lsr      data1, data1, #56)
+       CPU_BE(sub      result, data1, data2, lsr #56)
+       CPU_BE(ret)
 
 .Lmutual_align:
-       /*
-       * Sources are mutually aligned, but are not currently at an
-       * alignment boundary.  Round down the addresses and then mask off
-       * the bytes that precede the start point.
-       * We also need to adjust the limit calculations, but without
-       * overflowing if the limit is near ULONG_MAX.
-       */
+       /* Sources are mutually aligned, but are not currently at an
+          alignment boundary.  Round down the addresses and then mask off
+          the bytes that precede the start point.
+          We also need to adjust the limit calculations, but without
+          overflowing if the limit is near ULONG_MAX.  */
        bic     src1, src1, #7
        bic     src2, src2, #7
        ldr     data1, [src1], #8
-       neg     tmp3, tmp1, lsl #3  /* 64 - bits(bytes beyond align). */
+       neg     tmp3, count, lsl #3     /* 64 - bits(bytes beyond align). */
        ldr     data2, [src2], #8
        mov     tmp2, #~0
-       sub     limit_wd, limit, #1 /* limit != 0, so no underflow.  */
+       sub     limit_wd, limit, #1     /* limit != 0, so no underflow.  */
        /* Big-endian.  Early bytes are at MSB.  */
-CPU_BE( lsl    tmp2, tmp2, tmp3 )      /* Shift (tmp1 & 63).  */
+       CPU_BE(lsl      tmp2, tmp2, tmp3)       /* Shift (count & 63).  */
        /* Little-endian.  Early bytes are at LSB.  */
-CPU_LE( lsr    tmp2, tmp2, tmp3 )      /* Shift (tmp1 & 63).  */
-
+       CPU_LE(lsr      tmp2, tmp2, tmp3)       /* Shift (count & 63).  */
        and     tmp3, limit_wd, #7
        lsr     limit_wd, limit_wd, #3
-       /* Adjust the limit. Only low 3 bits used, so overflow irrelevant.*/
-       add     limit, limit, tmp1
-       add     tmp3, tmp3, tmp1
+       /* Adjust the limit. Only low 3 bits used, so overflow irrelevant.  */
+       add     limit, limit, count
+       add     tmp3, tmp3, count
        orr     data1, data1, tmp2
        orr     data2, data2, tmp2
        add     limit_wd, limit_wd, tmp3, lsr #3
        b       .Lstart_realigned
 
-/*when src1 offset is not equal to src2 offset...*/
+       .p2align 6
+       /* Don't bother with dwords for up to 16 bytes.  */
 .Lmisaligned8:
-       cmp     limit, #8
-       b.lo    .Ltiny8proc /*limit < 8... */
-       /*
-       * Get the align offset length to compare per byte first.
-       * After this process, one string's address will be aligned.*/
-       and     tmp1, src1, #7
-       neg     tmp1, tmp1
-       add     tmp1, tmp1, #8
-       and     tmp2, src2, #7
-       neg     tmp2, tmp2
-       add     tmp2, tmp2, #8
-       subs    tmp3, tmp1, tmp2
-       csel    pos, tmp1, tmp2, hi /*Choose the maximum. */
-       /*
-       * Here, limit is not less than 8, so directly run .Ltinycmp
-       * without checking the limit.*/
-       sub     limit, limit, pos
-.Ltinycmp:
+       cmp     limit, #16
+       b.hs    .Ltry_misaligned_words
+
+.Lbyte_loop:
+       /* Perhaps we can do better than this.  */
        ldrb    data1w, [src1], #1
        ldrb    data2w, [src2], #1
-       subs    pos, pos, #1
-       ccmp    data1w, #1, #0, ne  /* NZCV = 0b0000.  */
-       ccmp    data1w, data2w, #0, cs  /* NZCV = 0b0000.  */
-       b.eq    .Ltinycmp
-       cbnz    pos, 1f /*find the null or unequal...*/
-       cmp     data1w, #1
-       ccmp    data1w, data2w, #0, cs
-       b.eq    .Lstart_align /*the last bytes are equal....*/
-1:
+       subs    limit, limit, #1
+       ccmp    data1w, #1, #0, hi      /* NZCV = 0b0000.  */
+       ccmp    data1w, data2w, #0, cs  /* NZCV = 0b0000.  */
+       b.eq    .Lbyte_loop
+.Ldone:
        sub     result, data1, data2
        ret
-
-.Lstart_align:
+       /* Align the SRC1 to a dword by doing a bytewise compare and then do
+          the dword loop.  */
+.Ltry_misaligned_words:
        lsr     limit_wd, limit, #3
-       cbz     limit_wd, .Lremain8
-       /*process more leading bytes to make str1 aligned...*/
-       ands    xzr, src1, #7
-       b.eq    .Lrecal_offset
-       add     src1, src1, tmp3        /*tmp3 is positive in this branch.*/
-       add     src2, src2, tmp3
-       ldr     data1, [src1], #8
-       ldr     data2, [src2], #8
+       cbz     count, .Ldo_misaligned
 
-       sub     limit, limit, tmp3
+       neg     count, count
+       and     count, count, #7
+       sub     limit, limit, count
        lsr     limit_wd, limit, #3
-       subs    limit_wd, limit_wd, #1
 
-       sub     tmp1, data1, zeroones
-       orr     tmp2, data1, #REP8_7f
-       eor     diff, data1, data2  /* Non-zero if differences found.  */
-       csinv   endloop, diff, xzr, ne/*if limit_wd is 0,will finish the cmp*/
-       bics    has_nul, tmp1, tmp2
-       ccmp    endloop, #0, #0, eq /*has_null is ZERO: no null byte*/
-       b.ne    .Lunequal_proc
-       /*How far is the current str2 from the alignment boundary...*/
-       and     tmp3, tmp3, #7
-.Lrecal_offset:
-       neg     pos, tmp3
-.Lloopcmp_proc:
-       /*
-       * Divide the eight bytes into two parts. First,backwards the src2
-       * to an alignment boundary,load eight bytes from the SRC2 alignment
-       * boundary,then compare with the relative bytes from SRC1.
-       * If all 8 bytes are equal,then start the second part's comparison.
-       * Otherwise finish the comparison.
-       * This special handle can garantee all the accesses are in the
-       * thread/task space in avoid to overrange access.
-       */
-       ldr     data1, [src1,pos]
-       ldr     data2, [src2,pos]
-       sub     tmp1, data1, zeroones
-       orr     tmp2, data1, #REP8_7f
-       bics    has_nul, tmp1, tmp2 /* Non-zero if NUL terminator.  */
-       eor     diff, data1, data2  /* Non-zero if differences found.  */
-       csinv   endloop, diff, xzr, eq
-       cbnz    endloop, .Lunequal_proc
+.Lpage_end_loop:
+       ldrb    data1w, [src1], #1
+       ldrb    data2w, [src2], #1
+       cmp     data1w, #1
+       ccmp    data1w, data2w, #0, cs  /* NZCV = 0b0000.  */
+       b.ne    .Ldone
+       subs    count, count, #1
+       b.hi    .Lpage_end_loop
+
+.Ldo_misaligned:
+       /* Prepare ourselves for the next page crossing.  Unlike the aligned
+          loop, we fetch 1 less dword because we risk crossing bounds on
+          SRC2.  */
+       mov     count, #8
+       subs    limit_wd, limit_wd, #1
+       b.lo    .Ldone_loop
+.Lloop_misaligned:
+       and     tmp2, src2, #0xff8
+       eor     tmp2, tmp2, #0xff8
+       cbz     tmp2, .Lpage_end_loop
 
-       /*The second part process*/
        ldr     data1, [src1], #8
        ldr     data2, [src2], #8
-       subs    limit_wd, limit_wd, #1
        sub     tmp1, data1, zeroones
        orr     tmp2, data1, #REP8_7f
-       eor     diff, data1, data2  /* Non-zero if differences found.  */
-       csinv   endloop, diff, xzr, ne/*if limit_wd is 0,will finish the cmp*/
-       bics    has_nul, tmp1, tmp2
-       ccmp    endloop, #0, #0, eq /*has_null is ZERO: no null byte*/
-       b.eq    .Lloopcmp_proc
-
-.Lunequal_proc:
-       orr     syndrome, diff, has_nul
-       cbz     syndrome, .Lremain8
-.Lcal_cmpresult:
-       /*
-       * reversed the byte-order as big-endian,then CLZ can find the most
-       * significant zero bits.
-       */
-CPU_LE( rev    syndrome, syndrome )
-CPU_LE( rev    data1, data1 )
-CPU_LE( rev    data2, data2 )
-       /*
-       * For big-endian we cannot use the trick with the syndrome value
-       * as carry-propagation can corrupt the upper bits if the trailing
-       * bytes in the string contain 0x01.
-       * However, if there is no NUL byte in the dword, we can generate
-       * the result directly.  We can't just subtract the bytes as the
-       * MSB might be significant.
-       */
-CPU_BE( cbnz   has_nul, 1f )
-CPU_BE( cmp    data1, data2 )
-CPU_BE( cset   result, ne )
-CPU_BE( cneg   result, result, lo )
-CPU_BE( ret )
-CPU_BE( 1: )
-       /* Re-compute the NUL-byte detection, using a byte-reversed value.*/
-CPU_BE( rev    tmp3, data1 )
-CPU_BE( sub    tmp1, tmp3, zeroones )
-CPU_BE( orr    tmp2, tmp3, #REP8_7f )
-CPU_BE( bic    has_nul, tmp1, tmp2 )
-CPU_BE( rev    has_nul, has_nul )
-CPU_BE( orr    syndrome, diff, has_nul )
-       /*
-       * The MS-non-zero bit of the syndrome marks either the first bit
-       * that is different, or the top bit of the first zero byte.
-       * Shifting left now will bring the critical information into the
-       * top bits.
-       */
-       clz     pos, syndrome
-       lsl     data1, data1, pos
-       lsl     data2, data2, pos
-       /*
-       * But we need to zero-extend (char is unsigned) the value and then
-       * perform a signed 32-bit subtraction.
-       */
-       lsr     data1, data1, #56
-       sub     result, data1, data2, lsr #56
-       ret
-
-.Lremain8:
-       /* Limit % 8 == 0 => all bytes significant.  */
-       ands    limit, limit, #7
-       b.eq    .Lret0
-.Ltiny8proc:
-       ldrb    data1w, [src1], #1
-       ldrb    data2w, [src2], #1
-       subs    limit, limit, #1
+       eor     diff, data1, data2      /* Non-zero if differences found.  */
+       bics    has_nul, tmp1, tmp2     /* Non-zero if NUL terminator.  */
+       ccmp    diff, #0, #0, eq
+       b.ne    .Lnot_limit
+       subs    limit_wd, limit_wd, #1
+       b.pl    .Lloop_misaligned
 
-       ccmp    data1w, #1, #0, ne  /* NZCV = 0b0000.  */
-       ccmp    data1w, data2w, #0, cs  /* NZCV = 0b0000.  */
-       b.eq    .Ltiny8proc
-       sub     result, data1, data2
-       ret
+.Ldone_loop:
+       /* We found a difference or a NULL before the limit was reached.  */
+       and     limit, limit, #7
+       cbz     limit, .Lnot_limit
+       /* Read the last word.  */
+       sub     src1, src1, 8
+       sub     src2, src2, 8
+       ldr     data1, [src1, limit]
+       ldr     data2, [src2, limit]
+       sub     tmp1, data1, zeroones
+       orr     tmp2, data1, #REP8_7f
+       eor     diff, data1, data2      /* Non-zero if differences found.  */
+       bics    has_nul, tmp1, tmp2     /* Non-zero if NUL terminator.  */
+       ccmp    diff, #0, #0, eq
+       b.ne    .Lnot_limit
 
 .Lret0:
        mov     result, #0
-- 
2.17.1

Reply via email to