I like this patch since it's really simple. CFS does provide a nice infrastructure to enable new algorithmic changes/extensions. My only concern was the O(log N) complexity under heavy load, but I'm willing to agree that it's OK in the common case. Some comments on the code:

* Ingo Molnar <[EMAIL PROTECTED]> wrote:

static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
-       s64 key;
+       u64 key;

        /*
         * Are we enqueueing a waiting task? (for current tasks
@@ -442,26 +448,7 @@ static void update_stats_enqueue(struct
        /*
         * Update the key:
         */
-       key = cfs_rq->fair_clock;
-
-       /*
-        * Optimize the common nice 0 case:
-        */
-       if (likely(se->load.weight == NICE_0_LOAD)) {
-               key -= se->wait_runtime;
-       } else {
-               u64 tmp;
-
-               if (se->wait_runtime < 0) {
-                       tmp = -se->wait_runtime;
-                       key += (tmp * se->load.inv_weight) >>
-                                       (WMULT_SHIFT - NICE_0_SHIFT);
-               } else {
-                       tmp = se->wait_runtime;
-                       key -= (tmp * se->load.inv_weight) >>
-                                       (WMULT_SHIFT - NICE_0_SHIFT);
-               }
-       }
+       key = se->exec_runtime;

        se->fair_key = key;
}

Should we use the weighted fair clock exec_runtime as the key? This way tasks with larger weights will have their keys incremented more slowly and thus be given more CPU time. This is what other virtual-clock based fair scheduling algorithms commonly do.

@@ -583,6 +570,20 @@ static void __enqueue_sleeper(struct cfs
        cfs_rq->sleeper_bonus += delta_fair;
}

+/*
+ * Newly woken tasks are put into the "middle" of all runnable
+ * task's current runtime:
+ */
+static u64 avg_exec_runtime(struct cfs_rq *cfs_rq)
+{
+       u64 avg_exec_runtime = cfs_rq->exec_runtime;
+
+       if (cfs_rq->nr_running)
+               do_div(avg_exec_runtime, cfs_rq->nr_running);
+
+       return avg_exec_runtime;
+}
+
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
        struct task_struct *tsk = task_of(se);
@@ -640,8 +641,10 @@ enqueue_entity(struct cfs_rq *cfs_rq, st
         */
        update_curr(cfs_rq);

-       if (wakeup)
+       if (wakeup) {
+               se->exec_runtime = avg_exec_runtime(cfs_rq);
                enqueue_sleeper(cfs_rq, se);
+       }

        update_stats_enqueue(cfs_rq, se);
        __enqueue_entity(cfs_rq, se);
@@ -1126,6 +1129,7 @@ static void task_new_fair(struct rq *rq,
                schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
        }

+       se->exec_runtime = avg_exec_runtime(cfs_rq);
        __enqueue_entity(cfs_rq, se);
}

What's the intuition behind avg_exec_runtime? I thought the original CFS approach, i.e., setting a newly arriving task's key to be the current fair clock, adjusted by wait_runtime, was good. It matches other fair queuing algorithms and thus has provably good properties.

  tong
-
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to [EMAIL PROTECTED]
More majordomo info at  http://vger.kernel.org/majordomo-info.html
Please read the FAQ at  http://www.tux.org/lkml/

Reply via email to