The irq usage and lock dependency rules that if violated a deacklock may happen are explained in more detail.
Signed-off-by: Yuyang Du <duyuy...@gmail.com> --- Documentation/locking/lockdep-design.txt | 33 ++++++++++++++++++++++---------- 1 file changed, 23 insertions(+), 10 deletions(-) diff --git a/Documentation/locking/lockdep-design.txt b/Documentation/locking/lockdep-design.txt index ae65758..f189d13 100644 --- a/Documentation/locking/lockdep-design.txt +++ b/Documentation/locking/lockdep-design.txt @@ -108,14 +108,24 @@ Unused locks (e.g., mutexes) cannot be part of the cause of an error. Single-lock state rules: ------------------------ +A lock is irq-safe means it was ever used in an irq context, while a lock +is irq-unsafe means it was ever acquired with irq enabled. + A softirq-unsafe lock-class is automatically hardirq-unsafe as well. The -following states are exclusive, and only one of them is allowed to be -set for any lock-class: +following states must be exclusive: only one of them is allowed to be set +for any lock-class based on its usage: + + <hardirq-safe> or <hardirq-unsafe> + <softirq-safe> or <softirq-unsafe> - <hardirq-safe> and <hardirq-unsafe> - <softirq-safe> and <softirq-unsafe> +This is because if a lock can be used in irq context (irq-safe) then it +cannot be ever acquired with irq enabled (irq-unsafe). Otherwise, a +deadlock may happen. For example, in the scenario that after this lock +was acquired but before released, if the context is interrupted this +lock will be attempted to acquire twice, which creates a deadlock, +referred to as lock recursion deadlock. -The validator detects and reports lock usage that violate these +The validator detects and reports lock usage that violates these single-lock state rules. Multi-lock dependency rules: @@ -124,15 +134,18 @@ Multi-lock dependency rules: The same lock-class must not be acquired twice, because this could lead to lock recursion deadlocks. -Furthermore, two locks may not be taken in different order: +Furthermore, two locks can not be taken in inverse order: <L1> -> <L2> <L2> -> <L1> -because this could lead to lock inversion deadlocks. (The validator -finds such dependencies in arbitrary complexity, i.e. there can be any -other locking sequence between the acquire-lock operations, the -validator will still track all dependencies between locks.) +because this could lead to a deadlock - referred to as lock inversion +deadlock - as attempts to acquire the two locks form a circle which +could lead to the two contexts waiting for each other permanently. The +validator will find such dependency circle in arbitrary complexity, +i.e., there can be any other locking sequence between the acquire-lock +operations; the validator will still find whether these locks can be +acquired in a circular fashion. Furthermore, the following usage based lock dependencies are not allowed between any two lock-classes: -- 1.8.3.1