A method for creating discrete note names for just intervals and vice versa;
Using the (modified) Ben Johnston Tuning System.

Hans Bezemer

December 28, 2017

Abstract

In this article I want to describe a method to determine the
note name of a just interval using the (modified) Ben Johnston
tuning system (BJTS). The derived note names are discrete so
every interval has his own unique note name. I use the so called
3-limit intervals and note names as a base, here I differentiate
from the BJTS where a combination of 3- and 5-limit intervals
are used. To determine the right note name, each interval is
written as a product of (multiples of) primes. The product is
analyzed and the right comma’s and chroma’s are added to the
basename. This process can be reversed, so for any given note
name the corresponding ratio can be calculated. I assume that
the readers are familiar with (the basics of) just intonation and
the overtones / harmonic series.

1 introduction

1.1 Ben Johnston Tuning system

Ben Johnston” uses an absolute system to determine the note
name of a certain ratio. He sets C as Y4. And he uses the
commonly used CDEFGAB note names as basenotes. When
needed extra symbols are added to describe the right note name.
The symbols correspond with a discrete microtonal step. Each
step is associated with a prime number higher then 2, this is
explained below. Johnston uses a combination of 3-limit and
5-limit ratios for his base notes: C V4, D %, E %, F Y5, A %, B
1%g. Although musically this makes sense, it makes things much
more complicated when determining a note name. I choose to
use the Pythagorean intervals?, which are all multiples of the
prime numbers 3 and 2: C Y4, D %, E 8%a, F %, A 27, B

24%/12s.

1.2 One step at a time

Alright, time to get moving in the world of just intonation. In
this world it is possible to take all sorts of steps. Small steps,
bigger steps. Steps forward, steps backwards. Single steps,
multiple steps. But one thing is defined: the size of a specific
step is fixed.

For every step size a new prime number is involved. To calculate
the steps I used the prime harmonics from the harmonic series
(Ya, a, e, W, Wie, e, %16 and 3%6) and the correspond-
ing name as listed in a list of intervals®. Then the difference
between the prime harmonic interval and the 3 limit basenote
is calculated, see table M. I could have used more primes but
my rationale is that I want to be able to tune intervals by
ear, and the higher the prime the harder it gets. Using primes

lsee John Fonville’s article on the BJTS: sacredrealism.org/
catlamb/tuninginformation/articles/Fonville, %20John720-7%20Beny,
20Johnston’ s%20Extended%20Just/420lntonation. 420A%20Guide’20tor/
20Ilnterpreters.pdt

2Mr. J. Monzo suggests the same, see http://www.tonalsott.com/enc/h/
hewm.aspx .

3 https://en.wikipedia.org/wiki/List_of_pitch_intervals

Table 1: Prime commas

Prime Note Overtone Basenote comma
ratio ratio

5 E- 5/4 81/64 80/81
7 B” 7/4 16/9 63/64
11 F' 11/8 4/3 33/32
13 A 13/8 27/16 26/27
17 i 17/16 2187/2048 2176/2187
19 B9 19/16 32/27 512/513
23 F23 23/16 729/512 736/729
29 B2 29/16 16/9 261/256
31 B” 31/16 243/128 243/232

up to 31 is way more then I can hear, but this number is ar-
bitrary. Notice that for each prime comma there are specific
symbols to indicate that a basenote is raised or lowered with
a certain step. When a basenote is lowered with a comma or
chroma, Johnston inverts the symbol for primes 7 and higher:
L4 €T LT 61 €2 63 1€. For primes 3 and 5 a ‘™’ or a ‘b’ is used.

1.3 Ratios as products of primes

The key to determine the note name is to write a ratio as a prod-
uct of primes. For instance %2 can be written as 27 - 3!, or a
more complex example: 2¥20 can be written as 27131 .571. 71,
This way any ratio build of primes < 31 can be written as:
2%.3%.5°. 7. 11°- 137 . 179 . 19" . 237 . 297 . 31% .

But why should we want to do this?

Since we are in a logarithmic environment, calculating a new
ratio is done by multiplying or dividing two ratios. But multi-
plying for instance 2* with 22 equals 2372 = 25, thus the powers
may be summed together. When we make a matrix of only the
powers of the primes, every ratio can be written as a matrix.
For instance: 2241 can be written as 2'-371.5%.771.111.13°.
17°-19° - 23%. 299 . 31° (note that 2° equals 1, so all unused
primes have a power of ‘0’). Then only the powers are written:
oo—(1 -1 0 =1 1.0 0 0 0 0 0).

When two ratios are put together to create a new one, the two
matrices only have to be summed or subtracted, which is a rel-
atively simple action, especially for a computer. This will come
in handy when determining the note name.

2 Determining the note name

I will describe the steps needed to determine the note name for
any given ratio. To illustrate the process I’ve added pseudocode
in C*t* style.

sacredrealism.org/catlamb/tuninginformation/articles/Fonville,%20John%20-%20Ben%20Johnston's%20Extended%20Just%20Intonation,%20A%20Guide%20for%20Interpreters.pdf
sacredrealism.org/catlamb/tuninginformation/articles/Fonville,%20John%20-%20Ben%20Johnston's%20Extended%20Just%20Intonation,%20A%20Guide%20for%20Interpreters.pdf
sacredrealism.org/catlamb/tuninginformation/articles/Fonville,%20John%20-%20Ben%20Johnston's%20Extended%20Just%20Intonation,%20A%20Guide%20for%20Interpreters.pdf
sacredrealism.org/catlamb/tuninginformation/articles/Fonville,%20John%20-%20Ben%20Johnston's%20Extended%20Just%20Intonation,%20A%20Guide%20for%20Interpreters.pdf
http://www.tonalsoft.com/enc/h/hewm.aspx
http://www.tonalsoft.com/enc/h/hewm.aspx
https://en.wikipedia.org/wiki/List_of_pitch_intervals

2.1 Converting the ratio to a power of primes matrix

A given ratio must first be analyzed. Which primes are involved
and how many times are they used? The way to do this is to:

1. split the ratio into its numerator and denominator

2. analyze both for available primes by dividing them with
each prime and count the times an integer is formed

3. create a matrix for both

4. subtract the matrix of the denominator from the numera-
tor

Again, let’s take the ratio 2?21 as our example and put it in our
code™:

int rationum = 22;

int ratioden = 21;

int NRPRIMES = 11;

int PRIMES[NRPRIMES]={
2,3,5,7,11,13,17,19,23,29,31};

int powofprimes [NRPRIMES]={0};

for (n=0; n<NRPRIMES; n++){
float tempnumfl=0;
int tempnumint=0;

int i=0;

while (tempnumint =— tempnumfl){
tempnumfl = rationum /PRIMES[n];
tempnumint = tempnumfl;

i++;

}

float tempdenfl=0;

int tempdenint=0;

int j=0;

while (tempdenint tempdenfl){
tempdenfl = ratioden/PRIMES[n];
tempdenint = tempdenfl;

j++s

}

powofprimes [n]=1—j;

}

Table 2: Example subtraction of comma’s

(1 =10 -1 1 0 0 0)
+(-6 2 0 1 0 0 0 0)
-(-5 1.0 0 1 00000 0)
(0 00O 00O0OO0O0O0 O0)

primes 2, 3, 7 and 11. Notice that in table 0 there are no step
sizes determined for primes 2 and 3. 2 is only used to get a ratio
between two octaves (¥4 and %) and 3 is our reference prime,
because we use the Pythagorean tuning for our base notes.

We now know that a negative step size 7 and a positive step
size 11 was taken. FEach step size is also a ratio and can
therefore be written as a matrix. These matrices can be
summed or subtracted from our example matrix, as shown
in table B. This results (for this example) in the matrix
(0 00 0 0 0 0 0 0 O O)Whichequals%. C
has a ratio of Y4, so our basenote is C, with a 7 step subtracted
and a 11 step summed. This gives the following note name:

C4T. When we put this in code we get something like this®.

Now we have an array called ‘powofprimes’ which
contains the powers of primes of the given ratio:
[l -1 0 -1 1 0 0 00 0 O0].°

2.2 Determining the basenote and adding the commas

Lets recall what happens in the world of just intonation. We
start from a basenote and from that basenote we can take sev-
eral steps backward and / or forward of different sizes. Each
specific size involves a prime. When we’ve taken all the steps
we want, we arrive at our new unique note. This can also be
reversed and that is what we’re gonna do now.

When we look at the matrix we notice that several prime num-
bers are involved: 2, 3, 7 and 11. Some are part of the numera-
tor (indicated by the positive integers in the matrix) and some
are part of the denominator (indicated by the negative integers
in the matrix) of the ratio. The other prime numbers are out
of the game for this ratio and their powers are set to ‘0’. When
we look at our example, there were steps made which involved

4there has to be checked if the ratio doesn’t contain a prime number
higher then 31, but that is not a problem to do so.

5Note that this method makes the ratio as small as possible, because
powers of the small prime are subtracted from each other. For instance
86 will be simplified to 4/3.

int powofprimes = {1,-1,0,-1,1,0,0,0,0,0,0}
static int scale3base [7][NRPRIMES] = {
{2,-1,0,0,0,0,0,0,0,0,0}, //F 0
,0,0,0,0,0,0,0,0}, //C 1
0,0,0,0,0,0,0,0}, //G 2
0,0,0,0,0,0,0,0}, //D 3
0,0,0,0,0,0,
0,0,0,0,0,0
0,0,0,0,0,0

» Y

)

|
N W
Uk W N = o
coocoo

» VY

I
static int commas[NRPRIMES,NRPRIMES] = {
{1,0,0,0,0,0,0,

|
AR
»Auw»b
O“C>|q

N
©
e - =

|
®

B L L L e A e L)

w
N o o O

L

|
Ao W -
coocoo!
coocoo.
coocoo.
coocoo.
Cooco .
coo~o.
cor ool
orooo.
—roooo.

};
int basenotemat [NRPRIMES]={{0}};

for (int i=0; i<NRPRIMES; i++){
for (int j=0; j<NRPRIMES; j++){
basenotename [j]=
basenotenamesxcommas|i][j]*powofprimes[i];

}

2.3 displaying the note name

With the basenote determined and the ‘powofprimes’-matrix at
hand we can easily display the right note name. If needed the

SThis have to expanded with a check for flats and sharps, which a present
when the power of prime 3 is less then -1 or more then 6

difference between the ratio of the basenote and the ratio can
be calculated and converted into an amount of cents.

	introduction
	Ben Johnston Tuning system
	One step at a time
	Ratios as products of primes

	Determining the note name
	Converting the ratio to a power of primes matrix
	Determining the basenote and adding the commas
	displaying the note name

