[ https://issues.apache.org/jira/browse/KAFKA-8563?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
karan kumar updated KAFKA-8563: ------------------------------- Description: There was a [https://github.com/apache/kafka/blob/93bf96589471acadfb90e57ebfecbd91f679f77b/clients/src/main/java/org/apache/kafka/common/network/NetworkSend.java#L30] which can be removed from the network send class. Initial JMH benchmarks suggest no performance penalty. Present network send JMH report: {code:java} jmh-benchmarks git:(trunk) ✗ ./jmh.sh -f 2 ByteBufferSendBenchmark running gradlew :jmh-benchmarks:clean :jmh-benchmarks:shadowJar in quiet mode ./jmh.sh: line 34: ../gradlew: No such file or directory gradle build done running JMH with args [-f 2 ByteBufferSendBenchmark] # JMH version: 1.21 # VM version: JDK 1.8.0_201, Java HotSpot(TM) 64-Bit Server VM, 25.201-b09 # VM invoker: /Library/Java/JavaVirtualMachines/jdk1.8.0_201.jdk/Contents/Home/jre/bin/java # VM options: <none> # Warmup: 5 iterations, 2000 ms each # Measurement: 5 iterations, 5000 ms each # Timeout: 10 min per iteration # Threads: 1 thread, will synchronize iterations # Benchmark mode: Throughput, ops/time # Benchmark: org.apache.kafka.jmh.common.ByteBufferSendBenchmark.benchmarkMethod # Run progress: 0.00% complete, ETA 00:01:10 # Fork: 1 of 2 # Warmup Iteration 1: 35.049 ops/us # Warmup Iteration 2: 60.877 ops/us # Warmup Iteration 3: 59.207 ops/us # Warmup Iteration 4: 59.077 ops/us # Warmup Iteration 5: 59.327 ops/us Iteration 1: 58.516 ops/us Iteration 2: 58.952 ops/us Iteration 3: 58.596 ops/us Iteration 4: 59.126 ops/us Iteration 5: 58.557 ops/us # Run progress: 50.00% complete, ETA 00:00:35 # Fork: 2 of 2 # Warmup Iteration 1: 36.377 ops/us # Warmup Iteration 2: 61.741 ops/us # Warmup Iteration 3: 59.683 ops/us # Warmup Iteration 4: 59.571 ops/us # Warmup Iteration 5: 59.351 ops/us Iteration 1: 59.044 ops/us Iteration 2: 59.107 ops/us Iteration 3: 57.771 ops/us Iteration 4: 59.648 ops/us Iteration 5: 59.408 ops/us Result "org.apache.kafka.jmh.common.ByteBufferSendBenchmark.benchmarkMethod": 58.872 ±(99.9%) 0.806 ops/us [Average] (min, avg, max) = (57.771, 58.872, 59.648), stdev = 0.533 CI (99.9%): [58.066, 59.679] (assumes normal distribution) # Run complete. Total time: 00:01:11 REMEMBER: The numbers below are just data. To gain reusable insights, you need to follow up on why the numbers are the way they are. Use profilers (see -prof, -lprof), design factorial experiments, perform baseline and negative tests that provide experimental control, make sure the benchmarking environment is safe on JVM/OS/HW level, ask for reviews from the domain experts. Do not assume the numbers tell you what you want them to tell. Benchmark Mode Cnt Score Error Units *ByteBufferSendBenchmark.benchmarkMethod thrpt 10 58.872 ± 0.806 ops/us* JMH benchmarks done {code} and after removing the method call {code:java} // code placeholder ./jmh.sh: line 34: ../gradlew: No such file or directory gradle build done running JMH with args [-f 2 ByteBufferSendBenchmark] # JMH version: 1.21 # VM version: JDK 1.8.0_201, Java HotSpot(TM) 64-Bit Server VM, 25.201-b09 # VM invoker: /Library/Java/JavaVirtualMachines/jdk1.8.0_201.jdk/Contents/Home/jre/bin/java # VM options: <none> # Warmup: 5 iterations, 2000 ms each # Measurement: 5 iterations, 5000 ms each # Timeout: 10 min per iteration # Threads: 1 thread, will synchronize iterations # Benchmark mode: Throughput, ops/time # Benchmark: org.apache.kafka.jmh.common.ByteBufferSendBenchmark.benchmarkMethod # Run progress: 0.00% complete, ETA 00:01:10 # Fork: 1 of 2 # Warmup Iteration 1: 34.273 ops/us # Warmup Iteration 2: 61.565 ops/us # Warmup Iteration 3: 59.307 ops/us # Warmup Iteration 4: 57.081 ops/us # Warmup Iteration 5: 59.970 ops/us Iteration 1: 59.657 ops/us Iteration 2: 59.607 ops/us Iteration 3: 59.931 ops/us Iteration 4: 59.871 ops/us Iteration 5: 59.504 ops/us # Run progress: 50.00% complete, ETA 00:00:35 # Fork: 2 of 2 # Warmup Iteration 1: 38.849 ops/us # Warmup Iteration 2: 62.525 ops/us # Warmup Iteration 3: 58.492 ops/us # Warmup Iteration 4: 59.954 ops/us # Warmup Iteration 5: 60.017 ops/us Iteration 1: 59.819 ops/us Iteration 2: 60.102 ops/us Iteration 3: 60.195 ops/us Iteration 4: 59.975 ops/us Iteration 5: 60.159 ops/us Result "org.apache.kafka.jmh.common.ByteBufferSendBenchmark.benchmarkMethod": 59.882 ±(99.9%) 0.359 ops/us [Average] (min, avg, max) = (59.504, 59.882, 60.195), stdev = 0.237 CI (99.9%): [59.523, 60.241] (assumes normal distribution) # Run complete. Total time: 00:01:11 REMEMBER: The numbers below are just data. To gain reusable insights, you need to follow up on why the numbers are the way they are. Use profilers (see -prof, -lprof), design factorial experiments, perform baseline and negative tests that provide experimental control, make sure the benchmarking environment is safe on JVM/OS/HW level, ask for reviews from the domain experts. Do not assume the numbers tell you what you want them to tell. Benchmark Mode Cnt Score Error Units *ByteBufferSendBenchmark.benchmarkMethod thrpt 10 59.882 ± 0.359 ops/us* JMH benchmarks done {code} was: There was a [https://github.com/apache/kafka/blob/93bf96589471acadfb90e57ebfecbd91f679f77b/clients/src/main/java/org/apache/kafka/common/network/NetworkSend.java#L30] which can be removed from the network send class. Initial JMH benchmarks suggest no performance penalty. Present network send JMH report: {code:java} // code placeholder running JMH with args [-f 2 ByteBufferSendBenchmark] # JMH version: 1.21 # VM version: JDK 1.8.0_201, Java HotSpot(TM) 64-Bit Server VM, 25.201-b09 # VM invoker: /Library/Java/JavaVirtualMachines/jdk1.8.0_201.jdk/Contents/Home/jre/bin/java # VM options: <none> # Warmup: 5 iterations, 2000 ms each # Measurement: 5 iterations, 5000 ms each # Timeout: 10 min per iteration # Threads: 1 thread, will synchronize iterations # Benchmark mode: Throughput, ops/time # Benchmark: org.apache.kafka.jmh.common.ByteBufferSendBenchmark.testMethod # Run progress: 0.00% complete, ETA 00:01:10 # Fork: 1 of 2 # Warmup Iteration 1: 38.961 ops/us # Warmup Iteration 2: 66.493 ops/us # Warmup Iteration 3: 63.502 ops/us # Warmup Iteration 4: 64.205 ops/us # Warmup Iteration 5: 63.676 ops/us Iteration 1: 63.537 ops/us Iteration 2: 63.863 ops/us Iteration 3: 58.472 ops/us Iteration 4: 62.780 ops/us Iteration 5: 63.454 ops/us # Run progress: 50.00% complete, ETA 00:00:35 # Fork: 2 of 2 # Warmup Iteration 1: 41.128 ops/us # Warmup Iteration 2: 66.872 ops/us # Warmup Iteration 3: 64.279 ops/us # Warmup Iteration 4: 64.307 ops/us # Warmup Iteration 5: 64.101 ops/us Iteration 1: 64.315 ops/us Iteration 2: 64.370 ops/us Iteration 3: 64.043 ops/us Iteration 4: 60.844 ops/us Iteration 5: 62.936 ops/us Result "org.apache.kafka.jmh.common.ByteBufferSendBenchmark.testMethod": 62.861 ±(99.9%) 2.804 ops/us [Average] (min, avg, max) = (58.472, 62.861, 64.370), stdev = 1.854 CI (99.9%): [60.058, 65.665] (assumes normal distribution) # Run complete. Total time: 00:01:10 REMEMBER: The numbers below are just data. To gain reusable insights, you need to follow up on why the numbers are the way they are. Use profilers (see -prof, -lprof), design factorial experiments, perform baseline and negative tests that provide experimental control, make sure the benchmarking environment is safe on JVM/OS/HW level, ask for reviews from the domain experts. Do not assume the numbers tell you what you want them to tell. Benchmark Mode Cnt Score Error Units ByteBufferSendBenchmark.testMethod thrpt 10 62.861 ± 2.804 ops/us {code} and after removing the method call {code:java} // code placeholder running JMH with args [-f 2 ByteBufferSendBenchmark] # JMH version: 1.21 # VM version: JDK 1.8.0_201, Java HotSpot(TM) 64-Bit Server VM, 25.201-b09 # VM invoker: /Library/Java/JavaVirtualMachines/jdk1.8.0_201.jdk/Contents/Home/jre/bin/java # VM options: <none> # Warmup: 5 iterations, 2000 ms each # Measurement: 5 iterations, 5000 ms each # Timeout: 10 min per iteration # Threads: 1 thread, will synchronize iterations # Benchmark mode: Throughput, ops/time # Benchmark: org.apache.kafka.jmh.common.ByteBufferSendBenchmark.testMethod # Run progress: 0.00% complete, ETA 00:01:10 # Fork: 1 of 2 # Warmup Iteration 1: 40.512 ops/us # Warmup Iteration 2: 67.002 ops/us # Warmup Iteration 3: 63.399 ops/us # Warmup Iteration 4: 63.288 ops/us # Warmup Iteration 5: 63.776 ops/us Iteration 1: 63.539 ops/us Iteration 2: 63.204 ops/us Iteration 3: 63.114 ops/us Iteration 4: 63.106 ops/us Iteration 5: 63.708 ops/us # Run progress: 50.00% complete, ETA 00:00:35 # Fork: 2 of 2 # Warmup Iteration 1: 40.290 ops/us # Warmup Iteration 2: 65.076 ops/us # Warmup Iteration 3: 62.961 ops/us # Warmup Iteration 4: 63.219 ops/us # Warmup Iteration 5: 63.380 ops/us Iteration 1: 63.186 ops/us Iteration 2: 63.411 ops/us Iteration 3: 63.427 ops/us Iteration 4: 63.441 ops/us Iteration 5: 63.483 ops/us Result "org.apache.kafka.jmh.common.ByteBufferSendBenchmark.testMethod": 63.362 ±(99.9%) 0.303 ops/us [Average] (min, avg, max) = (63.106, 63.362, 63.708), stdev = 0.200 CI (99.9%): [63.059, 63.665] (assumes normal distribution) # Run complete. Total time: 00:01:10 REMEMBER: The numbers below are just data. To gain reusable insights, you need to follow up on why the numbers are the way they are. Use profilers (see -prof, -lprof), design factorial experiments, perform baseline and negative tests that provide experimental control, make sure the benchmarking environment is safe on JVM/OS/HW level, ask for reviews from the domain experts. Do not assume the numbers tell you what you want them to tell. Benchmark Mode Cnt Score Error Units ByteBufferSendBenchmark.testMethod thrpt 10 63.362 ± 0.303 ops/us JMH benchmarks done {code} > Minor: Remove method call in networkSend. Rely on java's vargs > boxing/autoboxing > -------------------------------------------------------------------------------- > > Key: KAFKA-8563 > URL: https://issues.apache.org/jira/browse/KAFKA-8563 > Project: Kafka > Issue Type: Improvement > Components: clients > Affects Versions: 2.4.0 > Environment: Darwin WM-CXXXXXX 18.2.0 Darwin Kernel Version 18.2.0: > Thu Dec 20 20:46:53 PST 2018; root:xnu-4903.241.1~1/RELEASE_X86_64 x86_64 > ProductName: Mac OS X > ProductVersion: 10.14.3 > java version "1.8.0_201" > Java(TM) SE Runtime Environment (build 1.8.0_201-b09) > Java HotSpot(TM) 64-Bit Server VM (build 25.201-b09, mixed mode) > Reporter: karan kumar > Priority: Minor > > There was a > [https://github.com/apache/kafka/blob/93bf96589471acadfb90e57ebfecbd91f679f77b/clients/src/main/java/org/apache/kafka/common/network/NetworkSend.java#L30] > which can be removed from the network send class. > > Initial JMH benchmarks suggest no performance penalty. > > Present network send JMH report: > > {code:java} > jmh-benchmarks git:(trunk) ✗ ./jmh.sh -f 2 ByteBufferSendBenchmark > running gradlew :jmh-benchmarks:clean :jmh-benchmarks:shadowJar in quiet mode > ./jmh.sh: line 34: ../gradlew: No such file or directory > gradle build done > running JMH with args [-f 2 ByteBufferSendBenchmark] > # JMH version: 1.21 > # VM version: JDK 1.8.0_201, Java HotSpot(TM) 64-Bit Server VM, 25.201-b09 > # VM invoker: > /Library/Java/JavaVirtualMachines/jdk1.8.0_201.jdk/Contents/Home/jre/bin/java > # VM options: <none> > # Warmup: 5 iterations, 2000 ms each > # Measurement: 5 iterations, 5000 ms each > # Timeout: 10 min per iteration > # Threads: 1 thread, will synchronize iterations > # Benchmark mode: Throughput, ops/time > # Benchmark: > org.apache.kafka.jmh.common.ByteBufferSendBenchmark.benchmarkMethod > # Run progress: 0.00% complete, ETA 00:01:10 > # Fork: 1 of 2 > # Warmup Iteration 1: 35.049 ops/us > # Warmup Iteration 2: 60.877 ops/us > # Warmup Iteration 3: 59.207 ops/us > # Warmup Iteration 4: 59.077 ops/us > # Warmup Iteration 5: 59.327 ops/us > Iteration 1: 58.516 ops/us > Iteration 2: 58.952 ops/us > Iteration 3: 58.596 ops/us > Iteration 4: 59.126 ops/us > Iteration 5: 58.557 ops/us > # Run progress: 50.00% complete, ETA 00:00:35 > # Fork: 2 of 2 > # Warmup Iteration 1: 36.377 ops/us > # Warmup Iteration 2: 61.741 ops/us > # Warmup Iteration 3: 59.683 ops/us > # Warmup Iteration 4: 59.571 ops/us > # Warmup Iteration 5: 59.351 ops/us > Iteration 1: 59.044 ops/us > Iteration 2: 59.107 ops/us > Iteration 3: 57.771 ops/us > Iteration 4: 59.648 ops/us > Iteration 5: 59.408 ops/us > Result "org.apache.kafka.jmh.common.ByteBufferSendBenchmark.benchmarkMethod": > 58.872 ±(99.9%) 0.806 ops/us [Average] > (min, avg, max) = (57.771, 58.872, 59.648), stdev = 0.533 > CI (99.9%): [58.066, 59.679] (assumes normal distribution) > # Run complete. Total time: 00:01:11 > REMEMBER: The numbers below are just data. To gain reusable insights, you > need to follow up on > why the numbers are the way they are. Use profilers (see -prof, -lprof), > design factorial > experiments, perform baseline and negative tests that provide experimental > control, make sure > the benchmarking environment is safe on JVM/OS/HW level, ask for reviews from > the domain experts. > Do not assume the numbers tell you what you want them to tell. > Benchmark Mode Cnt Score Error Units > *ByteBufferSendBenchmark.benchmarkMethod thrpt 10 58.872 ± 0.806 ops/us* > JMH benchmarks done > {code} > and after removing the method call > > {code:java} > // code placeholder > ./jmh.sh: line 34: ../gradlew: No such file or directory > gradle build done > running JMH with args [-f 2 ByteBufferSendBenchmark] > # JMH version: 1.21 > # VM version: JDK 1.8.0_201, Java HotSpot(TM) 64-Bit Server VM, 25.201-b09 > # VM invoker: > /Library/Java/JavaVirtualMachines/jdk1.8.0_201.jdk/Contents/Home/jre/bin/java > # VM options: <none> > # Warmup: 5 iterations, 2000 ms each > # Measurement: 5 iterations, 5000 ms each > # Timeout: 10 min per iteration > # Threads: 1 thread, will synchronize iterations > # Benchmark mode: Throughput, ops/time > # Benchmark: > org.apache.kafka.jmh.common.ByteBufferSendBenchmark.benchmarkMethod > # Run progress: 0.00% complete, ETA 00:01:10 > # Fork: 1 of 2 > # Warmup Iteration 1: 34.273 ops/us > # Warmup Iteration 2: 61.565 ops/us > # Warmup Iteration 3: 59.307 ops/us > # Warmup Iteration 4: 57.081 ops/us > # Warmup Iteration 5: 59.970 ops/us > Iteration 1: 59.657 ops/us > Iteration 2: 59.607 ops/us > Iteration 3: 59.931 ops/us > Iteration 4: 59.871 ops/us > Iteration 5: 59.504 ops/us > # Run progress: 50.00% complete, ETA 00:00:35 > # Fork: 2 of 2 > # Warmup Iteration 1: 38.849 ops/us > # Warmup Iteration 2: 62.525 ops/us > # Warmup Iteration 3: 58.492 ops/us > # Warmup Iteration 4: 59.954 ops/us > # Warmup Iteration 5: 60.017 ops/us > Iteration 1: 59.819 ops/us > Iteration 2: 60.102 ops/us > Iteration 3: 60.195 ops/us > Iteration 4: 59.975 ops/us > Iteration 5: 60.159 ops/us > Result "org.apache.kafka.jmh.common.ByteBufferSendBenchmark.benchmarkMethod": > 59.882 ±(99.9%) 0.359 ops/us [Average] > (min, avg, max) = (59.504, 59.882, 60.195), stdev = 0.237 > CI (99.9%): [59.523, 60.241] (assumes normal distribution) > # Run complete. Total time: 00:01:11 > REMEMBER: The numbers below are just data. To gain reusable insights, you > need to follow up on > why the numbers are the way they are. Use profilers (see -prof, -lprof), > design factorial > experiments, perform baseline and negative tests that provide experimental > control, make sure > the benchmarking environment is safe on JVM/OS/HW level, ask for reviews from > the domain experts. > Do not assume the numbers tell you what you want them to tell. > Benchmark Mode Cnt Score Error Units > *ByteBufferSendBenchmark.benchmarkMethod thrpt 10 59.882 ± 0.359 ops/us* > JMH benchmarks done > {code} > -- This message was sent by Atlassian JIRA (v7.6.3#76005)