[ https://issues.apache.org/jira/browse/ARROW-11480?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Ben Kietzman resolved ARROW-11480. ---------------------------------- Resolution: Fixed Issue resolved by pull request 9470 [https://github.com/apache/arrow/pull/9470] > [Python] Segmentation fault reading parquet with date filter with INT96 column > ------------------------------------------------------------------------------ > > Key: ARROW-11480 > URL: https://issues.apache.org/jira/browse/ARROW-11480 > Project: Apache Arrow > Issue Type: Bug > Components: C++ > Affects Versions: 3.0.0 > Reporter: Henrik Anker Rasmussen > Assignee: Ben Kietzman > Priority: Major > Labels: dataset, pull-request-available > Fix For: 3.0.1, 4.0.0 > > Attachments: timestamp.parquet > > Time Spent: 40m > Remaining Estimate: 0h > > If I read a parquet file (see attachment) with timestamps generated in Spark > and apply a filter on a date column I get segmentation fault > > {code:java} > import pyarrow.parquet as pq > now = datetime.datetime.now() > table = pq.read_table("timestamp.parquet", filters=[("date", "<=", now)]) > {code} > > The attached parquet file is generated with this code in spark: > {code:java} > now = datetime.datetime.now() > data = {"date": [ now - datetime.timedelta(days=i) for i in range(100)]} > schema = { "type": "struct", "fields": [{"name": "date", "type": "timestamp", > "nullable": True, "metadata": {}}, ], } > spf = spark.createDataFrame(pd.DataFrame(data), > schema=StructType.fromJson(schema)) > spf.write.format("parquet").mode("overwrite").save("timestamp.parquet") > {code} > If I downgrade pyarrow to 2.0.0 it works fine. > Python version 3.7.7 > pyarrow version 3.0.0 -- This message was sent by Atlassian Jira (v8.3.4#803005)