[ https://issues.apache.org/jira/browse/SPARK-51847?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
ASF GitHub Bot updated SPARK-51847: ----------------------------------- Labels: pull-request-available (was: ) > Extend PySpark testing framework util functions with basic data tests > --------------------------------------------------------------------- > > Key: SPARK-51847 > URL: https://issues.apache.org/jira/browse/SPARK-51847 > Project: Spark > Issue Type: New Feature > Components: PySpark, Tests > Affects Versions: 4.0.0 > Reporter: Stan Lochtenberg > Priority: Major > Labels: pull-request-available > > *Background* > The PySpark testing framework currently provides utilities like > assertDataFrameEqual and assertSchemaEqual for testing DataFrame operations. > However, it lacks utilities for common data quality and integrity tests that > are essential for data validation in ETL pipelines and data applications. > *Proposal* > Extend the PySpark testing framework with four new utility functions that > enable developers to perform common data quality tests: > # assertColumnUnique: Verifies that specified column(s) contain only unique > values. > # assertColumnNonNull: Checks that specified column(s) do not contain null > values. > # assertColumnValuesInSet: Ensures all values in specified column(s) are > within a given set of accepted values. > # assertReferentialIntegrity: Validates that all non-null values in a source > column exist in a target column (similar to foreign key constraints). > *Benefits* > * Simplifies data validation in PySpark applications and tests > * Reduces boilerplate code for common data quality checks > * Provides consistent error reporting for data quality issues > * Enables testing patterns similar to those in popular data testing > frameworks like in dbt > * Improves developer productivity when writing data quality tests > -- This message was sent by Atlassian Jira (v8.20.10#820010) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org