[ https://issues.apache.org/jira/browse/SPARK-48652?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Dongjoon Hyun updated SPARK-48652: ---------------------------------- Priority: Critical (was: Blocker) > Casting Issue in Spark SQL: String Column Compared to Integer Value Yields > Empty Results > ---------------------------------------------------------------------------------------- > > Key: SPARK-48652 > URL: https://issues.apache.org/jira/browse/SPARK-48652 > Project: Spark > Issue Type: Bug > Components: Spark Core, SQL > Affects Versions: 3.3.2 > Reporter: Abhishek Singh > Priority: Critical > Labels: newbie, pull-request-available > > In Spark SQL, comparing a string column to an integer value can lead to > unexpected results due to type casting resulting in an empty result set. > {code:java} > case class Person(id: String, name: String) > val personDF = Seq(Person("a", "amit"), Person("b", "abhishek")).toDF() > personDF.createOrReplaceTempView("person_ddf") > val sqlQuery = "SELECT * FROM person_ddf WHERE id <> -1" > val resultDF = spark.sql(sqlQuery) > resultDF.show() // Empty result due to type casting issue > {code} > Below is the logical and physical plan which I m getting > {code:java} > == Parsed Logical Plan == > 'Project [*] > +- 'Filter NOT ('id = -1) > +- 'UnresolvedRelation [person_ddf], [], false > == Analyzed Logical Plan == > id: string, name: string > Project [id#356, name#357] > +- Filter NOT (cast(id#356 as int) = -1) > +- SubqueryAlias person_ddf > +- View (`person_ddf`, [id#356,name#357]) > +- LocalRelation [id#356, name#357]{code} > *But when I m using the same query and table in Redshift which is based on > PostGreSQL. I am getting the desired result.* > {code:java} > select * from person where id <> -1; {code} > Explain plan obtained in Redshift. > {code:java} > XN Seq Scan on person (cost=0.00..0.03 rows=1 width=336) > Filter: ((id)::text <> '-1'::text) {code} > > In the execution plan for Spark, the ID column is cast as an integer, while > in Redshift, the ID column is cast as a varchar. > Shouldn't Spark SQL handle this the same way as Redshift, using the datatype > of the ID column rather than the datatype of -1? > -- This message was sent by Atlassian Jira (v8.20.10#820010) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org