[ 
https://issues.apache.org/jira/browse/SPARK-50883?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

ASF GitHub Bot updated SPARK-50883:
-----------------------------------
    Labels: pull-request-available  (was: )

> Support altering multiple columns in the same ALTER TABLE command
> -----------------------------------------------------------------
>
>                 Key: SPARK-50883
>                 URL: https://issues.apache.org/jira/browse/SPARK-50883
>             Project: Spark
>          Issue Type: New Feature
>          Components: SQL
>    Affects Versions: 3.5.4
>            Reporter: Cuong Nguyen
>            Priority: Major
>              Labels: pull-request-available
>
> Current ALTER TABLE ... ALTER COLUMN syntax only allows altering one column 
> at a time. For a large table with many columns, we need to run a command for 
> every column, which can be slow since we need to incur the preprocessing and 
> IO cost repeatedly. 
> A new syntax that allows specifying multiple columns can open door for 
> sharing such cost across multiple column changes. We propose this new syntax
> {code:java}
> ALTER TABLE table_name ALTER COLUMN { 
>   { column_identifier | field_name }
>   { COMMENT comment |
>     { FIRST | AFTER identifier } |
>     { SET | DROP } NOT NULL |
>     TYPE data_type |
>     SET DEFAULT clause |
>     DROP DEFAULT }
> }{code}
> For example:
> {code:java}
> ALTER TABLE test_table ALTER COLUMN
>   a COMMENT "new comment",
>   b TYPE BIGINT,
>   x.y.z FIRST{code}
> This new syntax is backward compatible with the current syntax. To bound the 
> complexity of the initial support of this syntax we place the following 
> restrictions:
>  * Altering the same column multiple times is not allowed
>  * Altering a parent and a child column (for nested data type) is not allowed.
>  



--
This message was sent by Atlassian Jira
(v8.20.10#820010)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to