[ https://issues.apache.org/jira/browse/SPARK-50391?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Xinrong Meng updated SPARK-50391: --------------------------------- Summary: Support DataFrame conversion to table argument (was: Support DataFrame conversion to table argument in Spark Classic) > Support DataFrame conversion to table argument > ---------------------------------------------- > > Key: SPARK-50391 > URL: https://issues.apache.org/jira/browse/SPARK-50391 > Project: Spark > Issue Type: Umbrella > Components: Connect, PySpark, SQL > Affects Versions: 4.0.0 > Reporter: Xinrong Meng > Priority: Major > > Table-Valued Functions (TVFs) and User-Defined Table Functions (UDTFs) are > widely used in Spark workflows. These functions often require a table > argument, which Spark internally represents as a Catalyst expression. While > Spark SQL supports constructs like TABLE(<query>) for this purpose, **there > is no direct API in PySpark or Scala to convert a DataFrame into a table > argument**. So we propose to support DataFrame conversion to table arguments > (in Spark Classic first), and enable UDTFs to accept table arguments in both > PySpark and Scala.. -- This message was sent by Atlassian Jira (v8.20.10#820010) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org