peng bo created SPARK-27406: ------------------------------- Summary: UnsafeArrayData serialization breaks when two machines have different Oops size Key: SPARK-27406 URL: https://issues.apache.org/jira/browse/SPARK-27406 Project: Spark Issue Type: Bug Components: SQL Affects Versions: 2.4.1 Reporter: peng bo
java.lang.NullPointerException at org.apache.spark.sql.catalyst.expressions.aggregate.ApproxCountDistinctForIntervals$$anonfun$endpoints$1.apply(ApproxCountDistinctForIntervals.scala:69) at org.apache.spark.sql.catalyst.expressions.aggregate.ApproxCountDistinctForIntervals$$anonfun$endpoints$1.apply(ApproxCountDistinctForIntervals.scala:69) at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234) at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234) at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33) at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:186) at scala.collection.TraversableLike$class.map(TraversableLike.scala:234) at scala.collection.mutable.ArrayOps$ofRef.map(ArrayOps.scala:186) at org.apache.spark.sql.catalyst.expressions.aggregate.ApproxCountDistinctForIntervals.endpoints$lzycompute(ApproxCountDistinctForIntervals.scala:69) at org.apache.spark.sql.catalyst.expressions.aggregate.ApproxCountDistinctForIntervals.endpoints(ApproxCountDistinctForIntervals.scala:66) at org.apache.spark.sql.catalyst.expressions.aggregate.ApproxCountDistinctForIntervals.org$apache$spark$sql$catalyst$expressions$aggregate$ApproxCountDistinctForIntervals$$hllppArray$lzycompute(ApproxCountDistinctForIntervals.scala:94) at org.apache.spark.sql.catalyst.expressions.aggregate.ApproxCountDistinctForIntervals.org$apache$spark$sql$catalyst$expressions$aggregate$ApproxCountDistinctForIntervals$$hllppArray(ApproxCountDistinctForIntervals.scala:93) at org.apache.spark.sql.catalyst.expressions.aggregate.ApproxCountDistinctForIntervals.org$apache$spark$sql$catalyst$expressions$aggregate$ApproxCountDistinctForIntervals$$numWordsPerHllpp$lzycompute(ApproxCountDistinctForIntervals.scala:104) at org.apache.spark.sql.catalyst.expressions.aggregate.ApproxCountDistinctForIntervals.org$apache$spark$sql$catalyst$expressions$aggregate$ApproxCountDistinctForIntervals$$numWordsPerHllpp(ApproxCountDistinctForIntervals.scala:104) at org.apache.spark.sql.catalyst.expressions.aggregate.ApproxCountDistinctForIntervals.totalNumWords$lzycompute(ApproxCountDistinctForIntervals.scala:106) at org.apache.spark.sql.catalyst.expressions.aggregate.ApproxCountDistinctForIntervals.totalNumWords(ApproxCountDistinctForIntervals.scala:106) at org.apache.spark.sql.catalyst.expressions.aggregate.ApproxCountDistinctForIntervals.createAggregationBuffer(ApproxCountDistinctForIntervals.scala:110) at org.apache.spark.sql.catalyst.expressions.aggregate.ApproxCountDistinctForIntervals.createAggregationBuffer(ApproxCountDistinctForIntervals.scala:44) at org.apache.spark.sql.catalyst.expressions.aggregate.TypedImperativeAggregate.initialize(interfaces.scala:528) at org.apache.spark.sql.execution.aggregate.ObjectAggregationIterator$$anonfun$initAggregationBuffer$2.apply(ObjectAggregationIterator.scala:120) at org.apache.spark.sql.execution.aggregate.ObjectAggregationIterator$$anonfun$initAggregationBuffer$2.apply(ObjectAggregationIterator.scala:120) at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33) at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:186) at org.apache.spark.sql.execution.aggregate.ObjectAggregationIterator.initAggregationBuffer(ObjectAggregationIterator.scala:120) at org.apache.spark.sql.execution.aggregate.ObjectAggregationIterator.org$apache$spark$sql$execution$aggregate$ObjectAggregationIterator$$createNewAggregationBuffer(ObjectAggregationIterator.scala:112) at org.apache.spark.sql.execution.aggregate.ObjectAggregationIterator.getAggregationBufferByKey(ObjectAggregationIterator.scala:128) at org.apache.spark.sql.execution.aggregate.ObjectAggregationIterator.processInputs(ObjectAggregationIterator.scala:150) at org.apache.spark.sql.execution.aggregate.ObjectAggregationIterator.<init>(ObjectAggregationIterator.scala:78) at org.apache.spark.sql.execution.aggregate.ObjectHashAggregateExec$$anonfun$doExecute$1$$anonfun$2.apply(ObjectHashAggregateExec.scala:114) at org.apache.spark.sql.execution.aggregate.ObjectHashAggregateExec$$anonfun$doExecute$1$$anonfun$2.apply(ObjectHashAggregateExec.scala:105) at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsWithIndexInternal$1$$anonfun$12.apply(RDD.scala:823) at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsWithIndexInternal$1$$anonfun$12.apply(RDD.scala:823) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324) at org.apache.spark.rdd.RDD.iterator(RDD.scala:288) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324) at org.apache.spark.rdd.RDD.iterator(RDD.scala:288) at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:99) at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:55) at org.apache.spark.scheduler.Task.run(Task.scala:121) ApproxCountDistinctForIntervals holds the UnsafeArrayData data to initialize endpoints. When the UnsafeArrayData is serialized with Java serialization, the BYTE_ARRAY_OFFSET in memory can change if two machines have different pointer width (Oops in JVM). It's similar to SPARK-10914. -- This message was sent by Atlassian JIRA (v7.6.3#76005) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org