alessandrobenedetti commented on code in PR #2809:
URL: https://github.com/apache/solr/pull/2809#discussion_r1863793135

##########
solr/solr-ref-guide/modules/query-guide/pages/embedding-text.adoc:
##########
@@ -0,0 +1,269 @@
+= Embedding Text
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements.  See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership.  The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License.  You may obtain a copy of the License at
+//
+//   http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied.  See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+With the *Large Language Model* (or *LLM* for short) module you can interact 
with Large Language Models in Solr to encode text to vectors at indexing and 
query time.
+
+
+== Text Embedding Concepts
+
+=== From Text to Vector
+
+The task of sentence similarity aims to encode text to vector in a way that 
sentences semantically similar are encoded to vectors close in a vector space 
(using a vector distance metric).
+
+
+=== Large Language Models 
+
+Large Language Models can be fine-tuned for such task.
+The resulting model is able to encode text to a numerical vector.
+
+For additional information you can refer to this 
https://sease.io/2021/12/using-bert-to-improve-search-relevance.html[blog post].
+
+==== Embedding Services
+
+Training, fine-tuning and operating such Large Language Models is expensive.
+
+Many companies focus on this aspect and let users access APIs to encode the 
text (at the price of a license fee).
+
+Apache Solr uses https://github.com/langchain4j/langchain4j[LangChain4j] to 
connect to such apis.
+
+[IMPORTANT]
+====
+At the moment a subset of the embedding models supported by LangChain4j is 
supported by Solr.
+
+*Disclaimer*: Apache Solr is *in no way* affiliated to any of these 
corporations or services.
+
+If you want to add support for additional services or improve the support for 
the existing ones, feel free to contribute:
+
+* https://github.com/apache/solr/blob/main/CONTRIBUTING.md[Contributing to 
Solr]
+====
+
+== Module
+
+This is provided via the `llm` xref:configuration-guide:solr-modules.adoc[Solr 
Module] that needs to be enabled before use.
+
+At the moment the only supported way to interact with Large Language Models is 
via embedding text.
+
+In the future additional components to empower Solr with LLM will be added.
+
+
+== LLM Configuration
+
+Large-Language-Model is a module and therefore its plugins must be configured 
in `solrconfig.xml`.
+
+=== Minimum Requirements
+
+* Declaration of the `text_to_vector` query parser.
++
+[source,xml]
+----
+<queryParser name="text_to_vector" 
class="org.apache.solr.llm.search.TextToVectorQParserPlugin"/>
+----
+
+== Text Embedding Lifecycle
+
+
+=== Models
+
+* A model encodes text to a vector.
+* A model in Solr is a reference to an external API that runs the Large 
Language Model responsible for text embedding.
+
+*N.B.* the Solr embedding model specifies the parameters to access the APIs, 
the model doesn't run internally in Solr
+
+
+A model is described by these parameters:
+
+
+`class`::
++
+[%autowidth,frame=none]
+|===
+s|Required |Default: none
+|===
++
+The model implementation.
+Accepted values: 
+
+* `dev.langchain4j.model.huggingface.HuggingFaceEmbeddingModel`.
+* `dev.langchain4j.model.mistralai.MistralAiEmbeddingModel`.
+* `dev.langchain4j.model.openai.OpenAiEmbeddingModel`.
+* `dev.langchain4j.model.cohere.CohereEmbeddingModel`.
+
+
+`name`::
++
+[%autowidth,frame=none]
+|===
+s|Required |Default: none
+|===
++
+The identifier of your model, this is used by any component that intends to 
use the model (`text_to_vector` query parser).
+
+`params`::
++
+[%autowidth,frame=none]
+|===
+|Optional |Default: none
+|===
++
+Each model class has potentially different params.
+Many are shared but for the full set of parameters of the model you are 
interested in please refer to the official documentation of the LangChain4j 
version included in Solr: 
https://docs.langchain4j.dev/category/embedding-models[Embedding Models in 
LangChain4j].
+
+
+=== Supported Models
+Apache Solr uses https://github.com/langchain4j/langchain4j[LangChain4j] to 
support text embedding.
+The models currently supported are:
+
+[tabs#supported-models]
+======
+Hugging Face::
++
+====
+
+[source,json]
+----
+{
+  "class": "dev.langchain4j.model.huggingface.HuggingFaceEmbeddingModel",
+  "name": "<a-name-for-your-model>",
+  "params": {
+    "accessToken": "<your-huggingface-api-key>",
+    "modelId": "<a-huggingface-embedding-model>"
+  }
+}
+----
+====
+
+MistralAI::
++
+====
+[source,json]
+----
+{
+  "class": "dev.langchain4j.model.mistralai.MistralAiEmbeddingModel",
+  "name": "<a-name-for-your-model>",
+  "params": {
+    "baseUrl": "https://api.mistral.ai/v1";,
+    "apiKey": "<your-mistralAI-api-key>",
+    "modelName": "<a-mistralAI-embedding-model>",
+    "timeout": 60,
+    "logRequests": true,
+    "logResponses": true,
+    "maxRetries": 5
+  }
+}
+----
+====
+
+OpenAI::
++
+====
+[source,json]
+----
+{
+  "class": "dev.langchain4j.model.openai.OpenAiEmbeddingModel",
+  "name": "<a-name-for-your-model>",
+  "params": {
+    "baseUrl": "https://api.openai.com/v1";,
+    "apiKey": "<your-openAI-api-key>",
+    "modelName": "<a-openAI-embedding-model>",
+    "timeout": 60,
+    "logRequests": true,
+    "logResponses": true,
+    "maxRetries": 5
+  }
+}
+----
+====
+
+Cohere::
++
+====
+[source,json]
+----
+{
+  "class": "dev.langchain4j.model.cohere.CohereEmbeddingModel",
+  "name": "<a-name-for-your-model>",
+  "params": {
+    "baseUrl": "https://api.cohere.ai/v1/";,
+    "apiKey": "<your-cohere-api-key>",
+    "modelName": "<a-cohere-embedding-model>",
+    "inputType": "search_document",
+    "timeout": 60,
+    "logRequests": true,
+    "logResponses": true
+  }
+}
+----
+====
+======
+
+=== Uploading a Model
+
+To upload the model in a `/path/myModel.json` file, please run:
+
+[source,bash]
+----
+curl -XPUT 
'http://localhost:8983/solr/techproducts/schema/embedding-model-store' 
--data-binary "@/path/myModel.json" -H 'Content-type:application/json'
+----
+
+
+To view all models:
+
+[source,text]
+http://localhost:8983/solr/techproducts/schema/embedding-model-store
+
+To delete the `currentModel` model:
+
+[source,bash]
+----
+curl -XDELETE 
'http://localhost:8983/solr/techproducts/schema/embedding-model-store/currentModel'
+----
+
+
+To view the model you just uploaded please open the following URL in a browser:
+
+[source,text]
+http://localhost:8983/solr/techproducts/schema/embedding-model-store
+
+.Example: /path/myModel.json
+[source,json]
+----
+{
+  "class": "dev.langchain4j.model.openai.OpenAiEmbeddingModel",
+  "name": "openai-1",
+  "params": {
+    "baseUrl": "https://api.openai.com/v1";,
+    "apiKey": "apiKey-openAI",
+    "modelName": "text-embedding-3-small",
+    "timeout": 60,
+    "logRequests": true,
+    "logResponses": true,
+    "maxRetries": 5
+  }
+}
+
+----
+
+=== Running an embedding Query
+To run a query that embeds your query text, using a model you previously 
uploaded is simple:
+
+[source,text]
+?q={!text_to_vector model=a-model f=vector topK=10}hello world query

Review Comment:
   I considered that, but proceeded this way for simplicity, happy for others 
to evlove this later!



-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: issues-unsubscr...@solr.apache.org

For queries about this service, please contact Infrastructure at:
us...@infra.apache.org


---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@solr.apache.org
For additional commands, e-mail: issues-h...@solr.apache.org

Reply via email to