[ 
https://issues.apache.org/jira/browse/HIVE-17684?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16190515#comment-16190515
 ] 

Sahil Takiar commented on HIVE-17684:
-------------------------------------

A solution to this issue would be to attempt to estimate the size of the 
{{HashMap}} that folds the small table. That seems to be what most other parts 
of Hive are doing: {{GroupByOperator}}, 
{{o.a.h.hive.ql.exec.tez.HashTableLoader}}.

The {{MapJoinTableContainer}} already implements a {{MemoryEstimate}} 
interface, but the implementation for {{HashMapWrapper}} doesn't seem complete 
(see {{HashMapWrapper#getEstimatedMemorySize}}. Estimating the size of Java 
objects is hard, but we could do our best ({{GroupByOperator}} attempts to do 
this, and the {{JavaDataModel}} has some helper method too).

> HoS memory issues with MapJoinMemoryExhaustionHandler
> -----------------------------------------------------
>
>                 Key: HIVE-17684
>                 URL: https://issues.apache.org/jira/browse/HIVE-17684
>             Project: Hive
>          Issue Type: Bug
>          Components: Spark
>            Reporter: Sahil Takiar
>            Assignee: Sahil Takiar
>
> We have seen a number of memory issues due the {{HashSinkOperator}} use of 
> the {{MapJoinMemoryExhaustionHandler}}. This handler is meant to detect 
> scenarios where the small table is taking too much space in memory, in which 
> case a {{MapJoinMemoryExhaustionError}} is thrown.
> The configs to control this logic are:
> {{hive.mapjoin.localtask.max.memory.usage}} (default 0.90)
> {{hive.mapjoin.followby.gby.localtask.max.memory.usage}} (default 0.55)
> The handler works by using the {{MemoryMXBean}} and uses the following logic 
> to estimate how much memory the {{HashMap}} is consuming: 
> {{MemoryMXBean#getHeapMemoryUsage().getUsed() / 
> MemoryMXBean#getHeapMemoryUsage().getMax()}}
> The issue is that {{MemoryMXBean#getHeapMemoryUsage().getUsed()}} can be 
> inaccurate. The value returned by this method returns all reachable and 
> unreachable memory on the heap, so there may be a bunch of garbage data, and 
> the JVM just hasn't taken the time to reclaim it all. This can lead to 
> intermittent failures of this check even though a simple GC would have 
> reclaimed enough space for the process to continue working.
> We should re-think the usage of {{MapJoinMemoryExhaustionHandler}} for HoS. 
> In Hive-on-MR this probably made sense to use because every Hive task was run 
> in a dedicated container, so a Hive Task could assume it created most of the 
> data on the heap. However, in Hive-on-Spark there can be multiple Hive Tasks 
> running in a single executor, each doing different things.



--
This message was sent by Atlassian JIRA
(v6.4.14#64029)

Reply via email to