[ https://issues.apache.org/jira/browse/HIVE-28450?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Sercan Tekin updated HIVE-28450: -------------------------------- Description: We are experiencing an issue with a partitioned table in Hive. When querying the table via the Hive CLI, the data retrieval works as expected without any errors. However, when attempting to query the same table through Spark, we encounter the following error in the HMS logs: {code:java} 2024-01-30 23:03:59,052 main DEBUG org.apache.logging.log4j.core.util.SystemClock does not support precise timestamps. Exception in thread "pool-7-thread-4" java.lang.OutOfMemoryError: Requested array size exceeds VM limit at java.util.Arrays.copyOf(Arrays.java:3236) at java.io.ByteArrayOutputStream.grow(ByteArrayOutputStream.java:118) at java.io.ByteArrayOutputStream.ensureCapacity(ByteArrayOutputStream.java:93) at java.io.ByteArrayOutputStream.write(ByteArrayOutputStream.java:153) at org.apache.thrift.transport.TSaslTransport.write(TSaslTransport.java:473) at org.apache.thrift.transport.TSaslServerTransport.write(TSaslServerTransport.java:42) at org.apache.thrift.protocol.TBinaryProtocol.writeString(TBinaryProtocol.java:227) at org.apache.hadoop.hive.metastore.api.FieldSchema$FieldSchemaStandardScheme.write(FieldSchema.java:517) at org.apache.hadoop.hive.metastore.api.FieldSchema$FieldSchemaStandardScheme.write(FieldSchema.java:456) at org.apache.hadoop.hive.metastore.api.FieldSchema.write(FieldSchema.java:394) at org.apache.hadoop.hive.metastore.api.StorageDescriptor$StorageDescriptorStandardScheme.write(StorageDescriptor.java:1423) at org.apache.hadoop.hive.metastore.api.StorageDescriptor$StorageDescriptorStandardScheme.write(StorageDescriptor.java:1250) at org.apache.hadoop.hive.metastore.api.StorageDescriptor.write(StorageDescriptor.java:1116) at org.apache.hadoop.hive.metastore.api.Partition$PartitionStandardScheme.write(Partition.java:1033) at org.apache.hadoop.hive.metastore.api.Partition$PartitionStandardScheme.write(Partition.java:890) at org.apache.hadoop.hive.metastore.api.Partition.write(Partition.java:786) at org.apache.hadoop.hive.metastore.api.ThriftHiveMetastore$get_partitions_result$get_partitions_resultStandardScheme.write(ThriftHiveMetastore.java) at org.apache.hadoop.hive.metastore.api.ThriftHiveMetastore$get_partitions_result$get_partitions_resultStandardScheme.write(ThriftHiveMetastore.java) at org.apache.hadoop.hive.metastore.api.ThriftHiveMetastore$get_partitions_result.write(ThriftHiveMetastore.java) at org.apache.thrift.ProcessFunction.process(ProcessFunction.java:58) at org.apache.thrift.TBaseProcessor.process(TBaseProcessor.java:38) at org.apache.hadoop.hive.thrift.HadoopThriftAuthBridge$Server$TUGIAssumingProcessor$1.run(HadoopThriftAuthBridge.java:603) at org.apache.hadoop.hive.thrift.HadoopThriftAuthBridge$Server$TUGIAssumingProcessor$1.run(HadoopThriftAuthBridge.java:600) at java.security.AccessController.doPrivileged(Native Method) at javax.security.auth.Subject.doAs(Subject.java:422) at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1669) at org.apache.hadoop.hive.thrift.HadoopThriftAuthBridge$Server$TUGIAssumingProcessor.process(HadoopThriftAuthBridge.java:600) at org.apache.thrift.server.TThreadPoolServer$WorkerProcess.run(TThreadPoolServer.java:313) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:750) Exception in thread "pool-7-thread-6" java.lang.OutOfMemoryError: Requested array size exceeds VM limit Exception in thread "pool-7-thread-9" java.lang.OutOfMemoryError: Requested array size exceeds VM limit {code} This error appears to be related to the JVM’s conservative approach to array size allocation, which limits the maximum size of arrays to prevent OutOfMemoryError exceptions. For reference, you can see a similar implementation in the JVM source code here: https://github.com/openjdk/jdk/blob/0e0dfca21f64ecfcb3e5ed7cdc2a173834faa509/src/java.base/share/classes/java/io/InputStream.java#L307-L313 Spark side implemented similar limit on their side, it would be good to implement the same thing on Hive side - https://github.com/apache/spark/blob/e5a5921968c84601ce005a7785bdd08c41a2d862/common/utils/src/main/scala/org/apache/spark/unsafe/array/ByteArrayUtils.java Workaround: As a temporary workaround, I have been able to mitigate the issue by setting the hive.metastore.batch.retrieve.table.partition.max configuration to a lower value. > Follow the array size of JVM in Hive transferable objects > --------------------------------------------------------- > > Key: HIVE-28450 > URL: https://issues.apache.org/jira/browse/HIVE-28450 > Project: Hive > Issue Type: Improvement > Reporter: Sercan Tekin > Priority: Major > > We are experiencing an issue with a partitioned table in Hive. When querying > the table via the Hive CLI, the data retrieval works as expected without any > errors. However, when attempting to query the same table through Spark, we > encounter the following error in the HMS logs: > {code:java} > 2024-01-30 23:03:59,052 main DEBUG > org.apache.logging.log4j.core.util.SystemClock does not support precise > timestamps. > Exception in thread "pool-7-thread-4" java.lang.OutOfMemoryError: Requested > array size exceeds VM limit > at java.util.Arrays.copyOf(Arrays.java:3236) > at java.io.ByteArrayOutputStream.grow(ByteArrayOutputStream.java:118) > at > java.io.ByteArrayOutputStream.ensureCapacity(ByteArrayOutputStream.java:93) > at java.io.ByteArrayOutputStream.write(ByteArrayOutputStream.java:153) > at > org.apache.thrift.transport.TSaslTransport.write(TSaslTransport.java:473) > at > org.apache.thrift.transport.TSaslServerTransport.write(TSaslServerTransport.java:42) > at > org.apache.thrift.protocol.TBinaryProtocol.writeString(TBinaryProtocol.java:227) > at > org.apache.hadoop.hive.metastore.api.FieldSchema$FieldSchemaStandardScheme.write(FieldSchema.java:517) > at > org.apache.hadoop.hive.metastore.api.FieldSchema$FieldSchemaStandardScheme.write(FieldSchema.java:456) > at > org.apache.hadoop.hive.metastore.api.FieldSchema.write(FieldSchema.java:394) > at > org.apache.hadoop.hive.metastore.api.StorageDescriptor$StorageDescriptorStandardScheme.write(StorageDescriptor.java:1423) > at > org.apache.hadoop.hive.metastore.api.StorageDescriptor$StorageDescriptorStandardScheme.write(StorageDescriptor.java:1250) > at > org.apache.hadoop.hive.metastore.api.StorageDescriptor.write(StorageDescriptor.java:1116) > at > org.apache.hadoop.hive.metastore.api.Partition$PartitionStandardScheme.write(Partition.java:1033) > at > org.apache.hadoop.hive.metastore.api.Partition$PartitionStandardScheme.write(Partition.java:890) > at > org.apache.hadoop.hive.metastore.api.Partition.write(Partition.java:786) > at > org.apache.hadoop.hive.metastore.api.ThriftHiveMetastore$get_partitions_result$get_partitions_resultStandardScheme.write(ThriftHiveMetastore.java) > at > org.apache.hadoop.hive.metastore.api.ThriftHiveMetastore$get_partitions_result$get_partitions_resultStandardScheme.write(ThriftHiveMetastore.java) > at > org.apache.hadoop.hive.metastore.api.ThriftHiveMetastore$get_partitions_result.write(ThriftHiveMetastore.java) > at org.apache.thrift.ProcessFunction.process(ProcessFunction.java:58) > at org.apache.thrift.TBaseProcessor.process(TBaseProcessor.java:38) > at > org.apache.hadoop.hive.thrift.HadoopThriftAuthBridge$Server$TUGIAssumingProcessor$1.run(HadoopThriftAuthBridge.java:603) > at > org.apache.hadoop.hive.thrift.HadoopThriftAuthBridge$Server$TUGIAssumingProcessor$1.run(HadoopThriftAuthBridge.java:600) > at java.security.AccessController.doPrivileged(Native Method) > at javax.security.auth.Subject.doAs(Subject.java:422) > at > org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1669) > at > org.apache.hadoop.hive.thrift.HadoopThriftAuthBridge$Server$TUGIAssumingProcessor.process(HadoopThriftAuthBridge.java:600) > at > org.apache.thrift.server.TThreadPoolServer$WorkerProcess.run(TThreadPoolServer.java:313) > at > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) > at > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) > at java.lang.Thread.run(Thread.java:750) > Exception in thread "pool-7-thread-6" java.lang.OutOfMemoryError: Requested > array size exceeds VM limit > Exception in thread "pool-7-thread-9" java.lang.OutOfMemoryError: Requested > array size exceeds VM limit > {code} > This error appears to be related to the JVM’s conservative approach to array > size allocation, which limits the maximum size of arrays to prevent > OutOfMemoryError exceptions. For reference, you can see a similar > implementation in the JVM source code here: > https://github.com/openjdk/jdk/blob/0e0dfca21f64ecfcb3e5ed7cdc2a173834faa509/src/java.base/share/classes/java/io/InputStream.java#L307-L313 > Spark side implemented similar limit on their side, it would be good to > implement the same thing on Hive side - > https://github.com/apache/spark/blob/e5a5921968c84601ce005a7785bdd08c41a2d862/common/utils/src/main/scala/org/apache/spark/unsafe/array/ByteArrayUtils.java > Workaround: > As a temporary workaround, I have been able to mitigate the issue by setting > the hive.metastore.batch.retrieve.table.partition.max configuration to a > lower value. -- This message was sent by Atlassian Jira (v8.20.10#820010)