[ https://issues.apache.org/jira/browse/HIVE-20660?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16648297#comment-16648297 ]
Ashutosh Chauhan commented on HIVE-20660: ----------------------------------------- +1 > Group by statistics estimation could be improved by bounding the total number > of rows to source table > ----------------------------------------------------------------------------------------------------- > > Key: HIVE-20660 > URL: https://issues.apache.org/jira/browse/HIVE-20660 > Project: Hive > Issue Type: Improvement > Components: Statistics > Affects Versions: 4.0.0 > Reporter: Vineet Garg > Assignee: Vineet Garg > Priority: Major > Attachments: HIVE-20660.1.patch, HIVE-20660.2.patch, > HIVE-20660.3.patch, HIVE-20660.4.patch, HIVE-20660.5.patch, HIVE-20660.6.patch > > > Currently the stats for group by is estimated by taking product of NDVs of > all the keys and bounding it by the number of rows of its input. This bound > could be improved by using the source table instead of immediate input, the > insight in this case is that cardinality/ndvs of a table can not go beyond > the original (outer joins will only add NULLs thereby increasing the > cardinality by 1). > Note that the assumption here is that group by keys all belong to the same > source table/input. > This will improve the estimation in situations where group by is executed > after joins wherein Hive could end up estimating the number of rows. > *Reproducer* > {code:sql} > set hive.stats.fetch.column.stats=true; > create table t1(i int, j int); > alter table t1 update statistics set('numRows'='10000', > 'rawDataSize'='18000'); > alter table t1 update statistics for column i > set('numDVs'='2500','numNulls'='50','highValue'='1000','lowValue'='0'); > alter table t1 update statistics for column j > set('numDVs'='500','numNulls'='30','highValue'='100','lowValue'='50'); > create table t2(i2 int, j2 int); > alter table t2 update statistics set('numRows'='100000000', > 'rawDataSize'='10000'); > alter table t2 update statistics for column i2 > set('numDVs'='10000000','numNulls'='0','highValue'='8000','lowValue'='0'); > alter table t2 update statistics for column j2 > set('numDVs'='10','numNulls'='0','highValue'='800','lowValue'='-1'); > explain select count (1) from t1,t2 > where t1.j=t2.i2 > group by t1.i, t1.j; > {code} > {code:sql} > Reducer 2 > Reduce Operator Tree: > Merge Join Operator > condition map: > Inner Join 0 to 1 > keys: > 0 _col1 (type: int) > 1 _col0 (type: int) > outputColumnNames: _col0, _col1 > Statistics: Num rows: 99700 Data size: 797288 Basic stats: > COMPLETE Column stats: COMPLETE > Group By Operator > aggregations: count() > keys: _col0 (type: int), _col1 (type: int) > mode: hash > outputColumnNames: _col0, _col1, _col2 > Statistics: Num rows: 49850 Data size: 797448 Basic stats: > COMPLETE Column stats: COMPLETE <========== > Reduce Output Operator > key expressions: _col0 (type: int), _col1 (type: int) > sort order: ++ > Map-reduce partition columns: _col0 (type: int), _col1 > (type: int) > Statistics: Num rows: 49850 Data size: 797448 Basic > stats: COMPLETE Column stats: COMPLETE > value expressions: _col2 (type: bigint) > ..................... > {code} -- This message was sent by Atlassian JIRA (v7.6.3#76005)