[ https://issues.apache.org/jira/browse/HIVE-18652?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16444287#comment-16444287 ]
Sahil Takiar commented on HIVE-18652: ------------------------------------- Now the console logs show this: {code} Spark Job[1] Metrics: TaskDurationTime: 570 ExecutorCpuTime: 390 JvmGCTime: 0 BytesRead / RecordsRead: 11150 / 500 ShuffleTotalBytesRead / ShuffleRecordsRead: 2445 / 1 ShuffleBytesWritten / ShuffleRecordsWritten: 2445 / 1 {code} I decided to expose only these metrics because they are the ones that are exposed by default on the Spark Web UI. Some follow up enhancements: * HIVE-19051: Add units to the displayed metrics * HIVE-19176: When we implement this, we can also add metrics for each individual Spark stage, right now the granularity is at the job level > Print Spark metrics on console > ------------------------------ > > Key: HIVE-18652 > URL: https://issues.apache.org/jira/browse/HIVE-18652 > Project: Hive > Issue Type: Sub-task > Components: Spark > Reporter: Sahil Takiar > Assignee: Sahil Takiar > Priority: Major > Attachments: HIVE-18652.1.patch, HIVE-18652.2.patch > > > For Hive-on-MR, each MR job launched prints out some stats about the job: > {code} > INFO : 2018-02-07 17:51:11,218 Stage-1 map = 0%, reduce = 0% > INFO : 2018-02-07 17:51:18,396 Stage-1 map = 100%, reduce = 0%, Cumulative > CPU 1.87 sec > INFO : 2018-02-07 17:51:25,742 Stage-1 map = 100%, reduce = 100%, > Cumulative CPU 4.34 sec > INFO : MapReduce Total cumulative CPU time: 4 seconds 340 msec > INFO : Ended Job = job_1517865654989_0004 > INFO : MapReduce Jobs Launched: > INFO : Stage-Stage-1: Map: 1 Reduce: 1 Cumulative CPU: 4.34 sec HDFS > Read: 7353 HDFS Write: 151 SUCCESS > INFO : Total MapReduce CPU Time Spent: 4 seconds 340 msec > {code} > We should do the same for Hive-on-Spark. -- This message was sent by Atlassian JIRA (v7.6.3#76005)