[ https://issues.apache.org/jira/browse/HIVE-17178?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16368421#comment-16368421 ]
Rui Li commented on HIVE-17178: ------------------------------- Update test to give table different sizes, so that query plan should be more deterministic. Tried {{bucketizedhiveinputformat}} locally and it fails due to OOME. It fails in master too, so not related to the patch here. {{bucketmapjoin6}} and {{dynamic_rdd_cache}} cannot be reproduced locally. {{spark_opt_shuffle_serde}} should have already been fixed. > Spark Partition Pruning Sink Operator can't target multiple Works > ----------------------------------------------------------------- > > Key: HIVE-17178 > URL: https://issues.apache.org/jira/browse/HIVE-17178 > Project: Hive > Issue Type: Sub-task > Components: Spark > Reporter: Sahil Takiar > Assignee: Rui Li > Priority: Major > Attachments: HIVE-17178.1.patch, HIVE-17178.2.patch, > HIVE-17178.3.patch, HIVE-17178.4.patch > > > A Spark Partition Pruning Sink Operator cannot be used to target multiple Map > Work objects. The entire DPP subtree (SEL-GBY-SPARKPRUNINGSINK) is duplicated > if a single table needs to be used to target multiple Map Works. > The following query shows the issue: > {code} > set hive.spark.dynamic.partition.pruning=true; > set hive.auto.convert.join=true; > create table part_table_1 (col int) partitioned by (part_col int); > create table part_table_2 (col int) partitioned by (part_col int); > create table regular_table (col int); > insert into table regular_table values (1); > alter table part_table_1 add partition (part_col=1); > insert into table part_table_1 partition (part_col=1) values (1), (2), (3), > (4); > alter table part_table_1 add partition (part_col=2); > insert into table part_table_1 partition (part_col=2) values (1), (2), (3), > (4); > alter table part_table_2 add partition (part_col=1); > insert into table part_table_2 partition (part_col=1) values (1), (2), (3), > (4); > alter table part_table_2 add partition (part_col=2); > insert into table part_table_2 partition (part_col=2) values (1), (2), (3), > (4); > explain select * from regular_table, part_table_1, part_table_2 where > regular_table.col = part_table_1.part_col and regular_table.col = > part_table_2.part_col; > {code} > The explain plan is > {code} > STAGE DEPENDENCIES: > Stage-2 is a root stage > Stage-1 depends on stages: Stage-2 > Stage-0 depends on stages: Stage-1 > STAGE PLANS: > Stage: Stage-2 > Spark > #### A masked pattern was here #### > Vertices: > Map 1 > Map Operator Tree: > TableScan > alias: regular_table > Statistics: Num rows: 1 Data size: 1 Basic stats: COMPLETE > Column stats: NONE > Filter Operator > predicate: col is not null (type: boolean) > Statistics: Num rows: 1 Data size: 1 Basic stats: > COMPLETE Column stats: NONE > Select Operator > expressions: col (type: int) > outputColumnNames: _col0 > Statistics: Num rows: 1 Data size: 1 Basic stats: > COMPLETE Column stats: NONE > Spark HashTable Sink Operator > keys: > 0 _col0 (type: int) > 1 _col1 (type: int) > 2 _col1 (type: int) > Select Operator > expressions: _col0 (type: int) > outputColumnNames: _col0 > Statistics: Num rows: 1 Data size: 1 Basic stats: > COMPLETE Column stats: NONE > Group By Operator > keys: _col0 (type: int) > mode: hash > outputColumnNames: _col0 > Statistics: Num rows: 1 Data size: 1 Basic stats: > COMPLETE Column stats: NONE > Spark Partition Pruning Sink Operator > partition key expr: part_col > Statistics: Num rows: 1 Data size: 1 Basic stats: > COMPLETE Column stats: NONE > target column name: part_col > target work: Map 2 > Select Operator > expressions: _col0 (type: int) > outputColumnNames: _col0 > Statistics: Num rows: 1 Data size: 1 Basic stats: > COMPLETE Column stats: NONE > Group By Operator > keys: _col0 (type: int) > mode: hash > outputColumnNames: _col0 > Statistics: Num rows: 1 Data size: 1 Basic stats: > COMPLETE Column stats: NONE > Spark Partition Pruning Sink Operator > partition key expr: part_col > Statistics: Num rows: 1 Data size: 1 Basic stats: > COMPLETE Column stats: NONE > target column name: part_col > target work: Map 3 > Local Work: > Map Reduce Local Work > Map 3 > Map Operator Tree: > TableScan > alias: part_table_2 > Statistics: Num rows: 8 Data size: 8 Basic stats: COMPLETE > Column stats: NONE > Select Operator > expressions: col (type: int), part_col (type: int) > outputColumnNames: _col0, _col1 > Statistics: Num rows: 8 Data size: 8 Basic stats: > COMPLETE Column stats: NONE > Spark HashTable Sink Operator > keys: > 0 _col0 (type: int) > 1 _col1 (type: int) > 2 _col1 (type: int) > Select Operator > expressions: _col1 (type: int) > outputColumnNames: _col0 > Statistics: Num rows: 8 Data size: 8 Basic stats: > COMPLETE Column stats: NONE > Group By Operator > keys: _col0 (type: int) > mode: hash > outputColumnNames: _col0 > Statistics: Num rows: 8 Data size: 8 Basic stats: > COMPLETE Column stats: NONE > Spark Partition Pruning Sink Operator > partition key expr: part_col > Statistics: Num rows: 8 Data size: 8 Basic stats: > COMPLETE Column stats: NONE > target column name: part_col > target work: Map 2 > Local Work: > Map Reduce Local Work > Stage: Stage-1 > Spark > #### A masked pattern was here #### > Vertices: > Map 2 > Map Operator Tree: > TableScan > alias: part_table_1 > Statistics: Num rows: 8 Data size: 8 Basic stats: COMPLETE > Column stats: NONE > Select Operator > expressions: col (type: int), part_col (type: int) > outputColumnNames: _col0, _col1 > Statistics: Num rows: 8 Data size: 8 Basic stats: > COMPLETE Column stats: NONE > Map Join Operator > condition map: > Inner Join 0 to 1 > Inner Join 0 to 2 > keys: > 0 _col0 (type: int) > 1 _col1 (type: int) > 2 _col1 (type: int) > outputColumnNames: _col0, _col1, _col2, _col3, _col4 > input vertices: > 0 Map 1 > 2 Map 3 > Statistics: Num rows: 17 Data size: 17 Basic stats: > COMPLETE Column stats: NONE > File Output Operator > compressed: false > Statistics: Num rows: 17 Data size: 17 Basic stats: > COMPLETE Column stats: NONE > table: > input format: > org.apache.hadoop.mapred.SequenceFileInputFormat > output format: > org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat > serde: > org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe > Local Work: > Map Reduce Local Work > Stage: Stage-0 > Fetch Operator > limit: -1 > Processor Tree: > ListSink > {code} > The DPP subtrees on Map 1 are exactly the same. We should be able to combine > them, which avoids doing duplicate work. -- This message was sent by Atlassian JIRA (v7.6.3#76005)