[ https://issues.apache.org/jira/browse/HIVE-9713?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=14535887#comment-14535887 ]
Sushanth Sowmyan commented on HIVE-9713: ---------------------------------------- Removing fix version of 1.2.0 in preparation of release, since this is not a blocker for 1.2.0. (Is this another candidate for 1.2.1?) > CBO : inefficient join order created for left join outer condition > ------------------------------------------------------------------ > > Key: HIVE-9713 > URL: https://issues.apache.org/jira/browse/HIVE-9713 > Project: Hive > Issue Type: Bug > Components: CBO > Affects Versions: 0.14.0 > Reporter: Mostafa Mokhtar > Assignee: Laljo John Pullokkaran > > For the query below which is a subset of TPC-DS Query 80, CBO joins > catalog_sales with catalog_returns first although the CE of the join is > relatively high. > catalog_sales should be joined with the selective dimension tables first. > {code} > select cp_catalog_page_id as catalog_page_id, > sum(cs_ext_sales_price) as sales, > sum(coalesce(cr_return_amount, 0)) as returns, > sum(cs_net_profit - coalesce(cr_net_loss, 0)) as profit > from catalog_sales left outer join catalog_returns on > (cs_item_sk = cr_item_sk and cs_order_number = cr_order_number), > date_dim, > catalog_page, > item, > promotion > where cs_sold_date_sk = d_date_sk > and d_date between cast('1998-08-04' as date) > and (cast('1998-09-04' as date)) > and cs_catalog_page_sk = cp_catalog_page_sk > and cs_item_sk = i_item_sk > and i_current_price > 50 > and cs_promo_sk = p_promo_sk > and p_channel_tv = 'N' > group by cp_catalog_page_id > {code} > Logical plan from CBO debug logs > {code} > 2015-02-17 22:34:04,577 DEBUG [main]: parse.CalcitePlanner > (CalcitePlanner.java:apply(743)) - Plan After Join Reordering: > HiveProject(catalog_page_id=[$0], sales=[$1], returns=[$2], profit=[$3]): > rowcount = 10590.0, cumulative cost = {8.25242586823495E15 rows, 0.0 cpu, 0.0 > io}, id = 1395 > HiveAggregate(group=[{0}], agg#0=[sum($1)], agg#1=[sum($2)], > agg#2=[sum($3)]): rowcount = 10590.0, cumulative cost = {8.25242586823495E15 > rows, 0.0 cpu, 0.0 io}, id = 1393 > HiveProject($f0=[$14], $f1=[$5], $f2=[coalesce($9, 0)], $f3=[-($6, > coalesce($10, 0))]): rowcount = 1.368586152225262E8, cumulative cost = > {8.25242586823495E15 rows, 0.0 cpu, 0.0 io}, id = 1391 > HiveJoin(condition=[=($3, $17)], joinType=[inner]): rowcount = > 1.368586152225262E8, cumulative cost = {8.25242586823495E15 rows, 0.0 cpu, > 0.0 io}, id = 1508 > HiveJoin(condition=[=($2, $15)], joinType=[inner]): rowcount = > 2.737172304450524E8, cumulative cost = {8.252425594517495E15 rows, 0.0 cpu, > 0.0 io}, id = 1506 > HiveJoin(condition=[=($1, $13)], joinType=[inner]): rowcount = > 8.211516913351573E8, cumulative cost = {8.252424773349804E15 rows, 0.0 cpu, > 0.0 io}, id = 1504 > HiveJoin(condition=[=($0, $11)], joinType=[inner]): rowcount = > 1.1296953399027347E11, cumulative cost = {8.252311803804096E15 rows, 0.0 cpu, > 0.0 io}, id = 1418 > HiveJoin(condition=[AND(=($2, $7), =($4, $8))], > joinType=[left]): rowcount = 8.252311488455487E15, cumulative cost = > {3.15348608E8 rows, 0.0 cpu, 0.0 io}, id = 1413 > HiveProject(cs_sold_date_sk=[$0], cs_catalog_page_sk=[$12], > cs_item_sk=[$15], cs_promo_sk=[$16], cs_order_number=[$17], > cs_ext_sales_price=[$23], cs_net_profit=[$33]): rowcount = 2.86549727E8, > cumulative cost = {0.0 rows, 0.0 cpu, 0.0 io}, id = 1324 > HiveTableScan(table=[[tpcds_bin_orc_200.catalog_sales]]): > rowcount = 2.86549727E8, cumulative cost = {0}, id = 1136 > HiveProject(cr_item_sk=[$2], cr_order_number=[$16], > cr_return_amount=[$18], cr_net_loss=[$26]): rowcount = 2.8798881E7, > cumulative cost = {0.0 rows, 0.0 cpu, 0.0 io}, id = 1327 > HiveTableScan(table=[[tpcds_bin_orc_200.catalog_returns]]): > rowcount = 2.8798881E7, cumulative cost = {0}, id = 1137 > HiveProject(d_date_sk=[$0], d_date=[$2]): rowcount = 1.0, > cumulative cost = {0.0 rows, 0.0 cpu, 0.0 io}, id = 1371 > HiveFilter(condition=[between(false, $2, > CAST('1998-08-04'):DATE, CAST('1998-09-04'):DATE)]): rowcount = 1.0, > cumulative cost = {0.0 rows, 0.0 cpu, 0.0 io}, id = 1369 > HiveTableScan(table=[[tpcds_bin_orc_200.date_dim]]): > rowcount = 73049.0, cumulative cost = {0}, id = 1138 > HiveProject(cp_catalog_page_sk=[$0], cp_catalog_page_id=[$1]): > rowcount = 11718.0, cumulative cost = {0.0 rows, 0.0 cpu, 0.0 io}, id = 1375 > HiveTableScan(table=[[tpcds_bin_orc_200.catalog_page]]): > rowcount = 11718.0, cumulative cost = {0}, id = 1139 > HiveProject(i_item_sk=[$0], i_current_price=[$5]): rowcount = > 16000.0, cumulative cost = {0.0 rows, 0.0 cpu, 0.0 io}, id = 1381 > HiveFilter(condition=[>($5, 5E1)]): rowcount = 16000.0, > cumulative cost = {0.0 rows, 0.0 cpu, 0.0 io}, id = 1379 > HiveTableScan(table=[[tpcds_bin_orc_200.item]]): rowcount = > 48000.0, cumulative cost = {0}, id = 1140 > HiveProject(p_promo_sk=[$0], p_channel_tv=[$11]): rowcount = 225.0, > cumulative cost = {0.0 rows, 0.0 cpu, 0.0 io}, id = 1387 > HiveFilter(condition=[=($11, 'N')]): rowcount = 225.0, cumulative > cost = {0.0 rows, 0.0 cpu, 0.0 io}, id = 1385 > HiveTableScan(table=[[tpcds_bin_orc_200.promotion]]): rowcount = > 450.0, cumulative cost = {0}, id = 1141 > {code} > Explain plan > {code} > STAGE DEPENDENCIES: > Stage-1 is a root stage > Stage-0 depends on stages: Stage-1 > STAGE PLANS: > Stage: Stage-1 > Tez > Edges: > Map 1 <- Map 2 (BROADCAST_EDGE) > Map 3 <- Map 1 (BROADCAST_EDGE) > Map 4 <- Map 3 (BROADCAST_EDGE), Map 6 (BROADCAST_EDGE), Map 7 > (BROADCAST_EDGE) > Reducer 5 <- Map 4 (SIMPLE_EDGE) > DagName: mmokhtar_20150306141010_d8c1b2d5-f05f-4039-8261-a69b6f18a2ac:1 > Vertices: > Map 1 > Map Operator Tree: > TableScan > alias: catalog_sales > filterExpr: (((cs_sold_date_sk is not null and > cs_catalog_page_sk is not null) and cs_item_sk is not null) and cs_promo_sk > is not null) (type: boolean) > Statistics: Num rows: 286549727 Data size: 65825832570 > Basic stats: COMPLETE Column stats: COMPLETE > Filter Operator > predicate: (((cs_sold_date_sk is not null and > cs_catalog_page_sk is not null) and cs_item_sk is not null) and cs_promo_sk > is not null) (type: boolean) > Statistics: Num rows: 285112475 Data size: 7974560516 > Basic stats: COMPLETE Column stats: COMPLETE > Select Operator > expressions: cs_sold_date_sk (type: int), > cs_catalog_page_sk (type: int), cs_item_sk (type: int), cs_promo_sk (type: > int), cs_order_number (type: int), cs_ext_sales_price (type: float), > cs_net_profit (type: float) > outputColumnNames: _col0, _col1, _col2, _col3, _col4, > _col5, _col6 > Statistics: Num rows: 285112475 Data size: 7974560516 > Basic stats: COMPLETE Column stats: COMPLETE > Map Join Operator > condition map: > Left Outer Join0 to 1 > keys: > 0 _col2 (type: int), _col4 (type: int) > 1 _col0 (type: int), _col1 (type: int) > outputColumnNames: _col0, _col1, _col2, _col3, _col5, > _col6, _col9, _col10 > input vertices: > 1 Map 2 > Statistics: Num rows: 2911 Data size: 93152 Basic > stats: COMPLETE Column stats: COMPLETE > Reduce Output Operator > key expressions: _col0 (type: int) > sort order: + > Map-reduce partition columns: _col0 (type: int) > Statistics: Num rows: 2911 Data size: 93152 Basic > stats: COMPLETE Column stats: COMPLETE > value expressions: _col1 (type: int), _col2 (type: > int), _col3 (type: int), _col5 (type: float), _col6 (type: float), _col9 > (type: float), _col10 (type: float) > Execution mode: vectorized > Map 2 > Map Operator Tree: > TableScan > alias: catalog_returns > filterExpr: cr_item_sk is not null (type: boolean) > Statistics: Num rows: 28798881 Data size: 5764329494 Basic > stats: COMPLETE Column stats: COMPLETE > Filter Operator > predicate: cr_item_sk is not null (type: boolean) > Statistics: Num rows: 28798881 Data size: 456171072 Basic > stats: COMPLETE Column stats: COMPLETE > Select Operator > expressions: cr_item_sk (type: int), cr_order_number > (type: int), cr_return_amount (type: float), cr_net_loss (type: float) > outputColumnNames: _col0, _col1, _col2, _col3 > Statistics: Num rows: 28798881 Data size: 456171072 > Basic stats: COMPLETE Column stats: COMPLETE > Reduce Output Operator > key expressions: _col0 (type: int), _col1 (type: int) > sort order: ++ > Map-reduce partition columns: _col0 (type: int), > _col1 (type: int) > Statistics: Num rows: 28798881 Data size: 456171072 > Basic stats: COMPLETE Column stats: COMPLETE > value expressions: _col2 (type: float), _col3 (type: > float) > Execution mode: vectorized > Map 3 > Map Operator Tree: > TableScan > alias: date_dim > filterExpr: (d_date BETWEEN 1998-08-04 AND 1998-09-04 and > d_date_sk is not null) (type: boolean) > Statistics: Num rows: 73049 Data size: 81741831 Basic > stats: COMPLETE Column stats: COMPLETE > Filter Operator > predicate: (d_date BETWEEN 1998-08-04 AND 1998-09-04 and > d_date_sk is not null) (type: boolean) > Statistics: Num rows: 36524 Data size: 3579352 Basic > stats: COMPLETE Column stats: COMPLETE > Select Operator > expressions: d_date_sk (type: int) > outputColumnNames: _col0 > Statistics: Num rows: 36524 Data size: 146096 Basic > stats: COMPLETE Column stats: COMPLETE > Map Join Operator > condition map: > Inner Join 0 to 1 > keys: > 0 _col0 (type: int) > 1 _col0 (type: int) > outputColumnNames: _col1, _col2, _col3, _col5, _col6, > _col9, _col10 > input vertices: > 0 Map 1 > Statistics: Num rows: 1456 Data size: 40768 Basic > stats: COMPLETE Column stats: COMPLETE > Reduce Output Operator > key expressions: _col1 (type: int) > sort order: + > Map-reduce partition columns: _col1 (type: int) > Statistics: Num rows: 1456 Data size: 40768 Basic > stats: COMPLETE Column stats: COMPLETE > value expressions: _col2 (type: int), _col3 (type: > int), _col5 (type: float), _col6 (type: float), _col9 (type: float), _col10 > (type: float) > Execution mode: vectorized > Map 4 > Map Operator Tree: > TableScan > alias: catalog_page > filterExpr: cp_catalog_page_sk is not null (type: boolean) > Statistics: Num rows: 11718 Data size: 5400282 Basic stats: > COMPLETE Column stats: COMPLETE > Filter Operator > predicate: cp_catalog_page_sk is not null (type: boolean) > Statistics: Num rows: 11718 Data size: 1218672 Basic > stats: COMPLETE Column stats: COMPLETE > Select Operator > expressions: cp_catalog_page_sk (type: int), > cp_catalog_page_id (type: string) > outputColumnNames: _col0, _col1 > Statistics: Num rows: 11718 Data size: 1218672 Basic > stats: COMPLETE Column stats: COMPLETE > Map Join Operator > condition map: > Inner Join 0 to 1 > keys: > 0 _col1 (type: int) > 1 _col0 (type: int) > outputColumnNames: _col2, _col3, _col5, _col6, _col9, > _col10, _col14 > input vertices: > 0 Map 3 > Statistics: Num rows: 1456 Data size: 180544 Basic > stats: COMPLETE Column stats: COMPLETE > Map Join Operator > condition map: > Inner Join 0 to 1 > keys: > 0 _col2 (type: int) > 1 _col0 (type: int) > outputColumnNames: _col3, _col5, _col6, _col9, > _col10, _col14 > input vertices: > 1 Map 6 > Statistics: Num rows: 486 Data size: 58320 Basic > stats: COMPLETE Column stats: COMPLETE > Map Join Operator > condition map: > Inner Join 0 to 1 > keys: > 0 _col3 (type: int) > 1 _col0 (type: int) > outputColumnNames: _col5, _col6, _col9, _col10, > _col14 > input vertices: > 1 Map 7 > Statistics: Num rows: 243 Data size: 28188 Basic > stats: COMPLETE Column stats: COMPLETE > Select Operator > expressions: _col14 (type: string), _col5 > (type: float), COALESCE(_col9,0) (type: float), (_col6 - COALESCE(_col10,0)) > (type: float) > outputColumnNames: _col0, _col1, _col2, _col3 > Statistics: Num rows: 243 Data size: 28188 > Basic stats: COMPLETE Column stats: COMPLETE > Group By Operator > aggregations: sum(_col1), sum(_col2), > sum(_col3) > keys: _col0 (type: string) > mode: hash > outputColumnNames: _col0, _col1, _col2, _col3 > Statistics: Num rows: 121 Data size: 15004 > Basic stats: COMPLETE Column stats: COMPLETE > Reduce Output Operator > key expressions: _col0 (type: string) > sort order: + > Map-reduce partition columns: _col0 (type: > string) > Statistics: Num rows: 121 Data size: 15004 > Basic stats: COMPLETE Column stats: COMPLETE > value expressions: _col1 (type: double), > _col2 (type: double), _col3 (type: double) > Execution mode: vectorized > Map 6 > Map Operator Tree: > TableScan > alias: item > filterExpr: ((i_current_price > 50.0) and i_item_sk is not > null) (type: boolean) > Statistics: Num rows: 48000 Data size: 68732712 Basic > stats: COMPLETE Column stats: COMPLETE > Filter Operator > predicate: ((i_current_price > 50.0) and i_item_sk is not > null) (type: boolean) > Statistics: Num rows: 16000 Data size: 127832 Basic > stats: COMPLETE Column stats: COMPLETE > Select Operator > expressions: i_item_sk (type: int) > outputColumnNames: _col0 > Statistics: Num rows: 16000 Data size: 64000 Basic > stats: COMPLETE Column stats: COMPLETE > Reduce Output Operator > key expressions: _col0 (type: int) > sort order: + > Map-reduce partition columns: _col0 (type: int) > Statistics: Num rows: 16000 Data size: 64000 Basic > stats: COMPLETE Column stats: COMPLETE > Execution mode: vectorized > Map 7 > Map Operator Tree: > TableScan > alias: promotion > filterExpr: ((p_channel_tv = 'N') and p_promo_sk is not > null) (type: boolean) > Statistics: Num rows: 450 Data size: 530848 Basic stats: > COMPLETE Column stats: COMPLETE > Filter Operator > predicate: ((p_channel_tv = 'N') and p_promo_sk is not > null) (type: boolean) > Statistics: Num rows: 225 Data size: 20025 Basic stats: > COMPLETE Column stats: COMPLETE > Select Operator > expressions: p_promo_sk (type: int) > outputColumnNames: _col0 > Statistics: Num rows: 225 Data size: 900 Basic stats: > COMPLETE Column stats: COMPLETE > Reduce Output Operator > key expressions: _col0 (type: int) > sort order: + > Map-reduce partition columns: _col0 (type: int) > Statistics: Num rows: 225 Data size: 900 Basic stats: > COMPLETE Column stats: COMPLETE > Execution mode: vectorized > Reducer 5 > Reduce Operator Tree: > Group By Operator > aggregations: sum(VALUE._col0), sum(VALUE._col1), > sum(VALUE._col2) > keys: KEY._col0 (type: string) > mode: mergepartial > outputColumnNames: _col0, _col1, _col2, _col3 > Statistics: Num rows: 121 Data size: 15004 Basic stats: > COMPLETE Column stats: COMPLETE > File Output Operator > compressed: false > Statistics: Num rows: 121 Data size: 15004 Basic stats: > COMPLETE Column stats: COMPLETE > table: > input format: org.apache.hadoop.mapred.TextInputFormat > output format: > org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat > serde: > org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe > Stage: Stage-0 > Fetch Operator > limit: -1 > Processor Tree: > ListSink > {code} -- This message was sent by Atlassian JIRA (v6.3.4#6332)