[ https://issues.apache.org/jira/browse/FLINK-6115?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15950319#comment-15950319 ]
Luke Hutchison commented on FLINK-6115: --------------------------------------- [~greghogan] You're assuming data with {{null}} values in it is "bad data", or that getting a {{null}} value is always going to be unexpected, or that it will trigger {{NullPointerException}}s downstream. Far from it, there is a huge range of valid and intentional uses for {{null}} values. Many programmers won't be able to use {{Optional}}, for years, due to being stuck on Java 7 for reasons beyond their control). But even with {{Optional}} available, many Java 8 programmers still use {{null}} for a wide range of uses, and will until the language dies a very slow death. (It will always be impossible until the end of time, for example, to tell without an extra call if {{Map#get(key)}} returned {{null}} because there was no value corresponding to that key, or because {{null}} was mapped to the key -- but programmers know and expect this, for better or for worse.) The most ironic thing about this whole conversation though is the claim that omitting {{null}} was done for performance reasons, followed by the recommendation to use {{Optional}}: (1) both the performance overhead _and_ the memory overhead of wrapping types in {{Optional}} is _significantly higher_ than using a bitfield in the wire format of a serialized tuple to mark null fields; (2) the overhead of actually _using_ a serialized tuple for any of the things you ever need to serialize one for (i.e. writing a serialized tuple to persistent storage, and/or sending it over the wire) takes orders of magnitude more time than the serialization and deserialization process, which makes the impact of adding a bitfield vanishingly small. Did you actually benchmark the impact of serializing {{null}} before concluding it would be too inefficient, and are those numbers available? Having hard numbers, particularly in a head-to-head comparison (both using tuples without {{null}}s, using {{Record}}s with nulls, and using tuples with {{Optional}}) would be an important factor in the community decision process that you linked. > Need more helpful error message when trying to serialize a tuple with a null > field > ---------------------------------------------------------------------------------- > > Key: FLINK-6115 > URL: https://issues.apache.org/jira/browse/FLINK-6115 > Project: Flink > Issue Type: Bug > Components: Core > Affects Versions: 1.2.0 > Reporter: Luke Hutchison > > When Flink tries to serialize a tuple with a null field, you get the > following, which has no information about where in the program the problem > occurred (all the stack trace lines are in Flink, not in user code). > {noformat} > Exception in thread "main" > org.apache.flink.runtime.client.JobExecutionException: Job execution failed. > at > org.apache.flink.runtime.jobmanager.JobManager$$anonfun$handleMessage$1$$anonfun$applyOrElse$6.apply$mcV$sp(JobManager.scala:900) > at > org.apache.flink.runtime.jobmanager.JobManager$$anonfun$handleMessage$1$$anonfun$applyOrElse$6.apply(JobManager.scala:843) > at > org.apache.flink.runtime.jobmanager.JobManager$$anonfun$handleMessage$1$$anonfun$applyOrElse$6.apply(JobManager.scala:843) > at > scala.concurrent.impl.Future$PromiseCompletingRunnable.liftedTree1$1(Future.scala:24) > at > scala.concurrent.impl.Future$PromiseCompletingRunnable.run(Future.scala:24) > at akka.dispatch.TaskInvocation.run(AbstractDispatcher.scala:40) > at > akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:397) > at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260) > at > scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339) > at > scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979) > at > scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107) > Caused by: java.lang.IllegalArgumentException: The record must not be null. > at > org.apache.flink.api.common.typeutils.base.array.StringArraySerializer.serialize(StringArraySerializer.java:73) > at > org.apache.flink.api.common.typeutils.base.array.StringArraySerializer.serialize(StringArraySerializer.java:33) > at > org.apache.flink.api.java.typeutils.runtime.TupleSerializer.serialize(TupleSerializer.java:124) > at > org.apache.flink.api.java.typeutils.runtime.TupleSerializer.serialize(TupleSerializer.java:30) > at > org.apache.flink.runtime.plugable.SerializationDelegate.write(SerializationDelegate.java:56) > at > org.apache.flink.runtime.io.network.api.serialization.SpanningRecordSerializer.addRecord(SpanningRecordSerializer.java:77) > at > org.apache.flink.runtime.io.network.api.writer.RecordWriter.sendToTarget(RecordWriter.java:113) > at > org.apache.flink.runtime.io.network.api.writer.RecordWriter.emit(RecordWriter.java:88) > at > org.apache.flink.runtime.operators.shipping.OutputCollector.collect(OutputCollector.java:65) > at > org.apache.flink.runtime.operators.util.metrics.CountingCollector.collect(CountingCollector.java:35) > at > org.apache.flink.runtime.operators.chaining.ChainedMapDriver.collect(ChainedMapDriver.java:79) > at > org.apache.flink.runtime.operators.util.metrics.CountingCollector.collect(CountingCollector.java:35) > at > org.apache.flink.api.java.operators.translation.PlanFilterOperator$FlatMapFilter.flatMap(PlanFilterOperator.java:51) > at > org.apache.flink.runtime.operators.FlatMapDriver.run(FlatMapDriver.java:108) > at org.apache.flink.runtime.operators.BatchTask.run(BatchTask.java:490) > at > org.apache.flink.runtime.operators.BatchTask.invoke(BatchTask.java:355) > at org.apache.flink.runtime.taskmanager.Task.run(Task.java:655) > at java.lang.Thread.run(Thread.java:745) > {noformat} > The only thing I can tell from this is that it happened somewhere in a > flatMap (but I have dozens of them in my code). Surely there's a way to pull > out the source file name and line number from the program DAG node when > errors like this occur? -- This message was sent by Atlassian JIRA (v6.3.15#6346)