Github user fhueske commented on a diff in the pull request: https://github.com/apache/flink/pull/3646#discussion_r109041002 --- Diff: flink-libraries/flink-table/src/main/scala/org/apache/flink/table/plan/nodes/datastream/DataStreamGroupAggregate.scala --- @@ -0,0 +1,117 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one + * or more contributor license agreements. See the NOTICE file + * distributed with this work for additional information + * regarding copyright ownership. The ASF licenses this file + * to you under the Apache License, Version 2.0 (the + * "License"); you may not use this file except in compliance + * with the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.flink.table.plan.nodes.datastream + +import org.apache.calcite.plan.{RelOptCluster, RelTraitSet} +import org.apache.calcite.rel.`type`.RelDataType +import org.apache.calcite.rel.core.AggregateCall +import org.apache.calcite.rel.{RelNode, RelWriter, SingleRel} +import org.apache.flink.streaming.api.datastream.DataStream +import org.apache.flink.table.api.StreamTableEnvironment +import org.apache.flink.table.calcite.FlinkTypeFactory +import org.apache.flink.table.runtime.aggregate._ +import org.apache.flink.table.plan.nodes.CommonAggregate +import org.apache.flink.types.Row +import org.apache.flink.table.runtime.aggregate.AggregateUtil.CalcitePair + +/** + * + * Flink RelNode for data stream group (without window & early-firing) aggregate + * + * @param cluster Cluster of the RelNode, represent for an environment of related + * relational expressions during the optimization of a query. + * @param traitSet Trait set of the RelNode + * @param inputNode The input RelNode of aggregation + * @param namedAggregates List of calls to aggregate functions and their output field names + * @param rowRelDataType The type of the rows of the RelNode + * @param inputType The type of the rows of aggregation input RelNode + * @param groupings The position (in the input Row) of the grouping keys + */ +class DataStreamGroupAggregate( + cluster: RelOptCluster, + traitSet: RelTraitSet, + inputNode: RelNode, + namedAggregates: Seq[CalcitePair[AggregateCall, String]], + rowRelDataType: RelDataType, + inputType: RelDataType, + groupings: Array[Int]) + extends SingleRel(cluster, traitSet, inputNode) + with CommonAggregate + with DataStreamRel { + + override def deriveRowType() = rowRelDataType + + def getGrouping() = groupings + + override def copy(traitSet: RelTraitSet, inputs: java.util.List[RelNode]): RelNode = { + new DataStreamGroupAggregate( + cluster, + traitSet, + inputs.get(0), + namedAggregates, + getRowType, + inputType, + groupings) + } + + override def toString: String = { + s"Aggregate(${ + if (!groupings.isEmpty) { + s"groupBy: (${groupingToString(inputType, groupings)}), " + } else { + "" + } + }select:(${aggregationToString(inputType, groupings, getRowType, namedAggregates, Nil)}))" + } + + override def explainTerms(pw: RelWriter): RelWriter = { + super.explainTerms(pw) + .itemIf("groupBy", groupingToString(inputType, groupings), !groupings.isEmpty) + .item("select", aggregationToString(inputType, groupings, getRowType, namedAggregates, Nil)) + } + + override def translateToPlan(tableEnv: StreamTableEnvironment): DataStream[Row] = { + + val inputDS = input.asInstanceOf[DataStreamRel].translateToPlan(tableEnv) + + val rowTypeInfo = FlinkTypeFactory.toInternalRowTypeInfo(getRowType) + + val aggString = aggregationToString( + inputType, + groupings, + getRowType, + namedAggregates, + Nil) + + val keyedAggOpName = s"groupBy: (${groupingToString(inputType, groupings)}), " + + s"select: ($aggString)" + + val processFunction = AggregateUtil.createGroupAggregateFunction( + namedAggregates, + inputType, + groupings) + + inputDS + .keyBy(groupings: _*) --- End diff -- I think we can easily support the case of non-grouped aggregates as well. We use `.keyBy(new NullByteKeySelector[Row])` to send all data to a single instance of the process function. This is also done in `DataStreamOverAggregate` to implement the non-partitioned OVER windows.
--- If your project is set up for it, you can reply to this email and have your reply appear on GitHub as well. If your project does not have this feature enabled and wishes so, or if the feature is enabled but not working, please contact infrastructure at infrastruct...@apache.org or file a JIRA ticket with INFRA. ---