[ https://issues.apache.org/jira/browse/FLINK-6082?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15949878#comment-15949878 ]
radu commented on FLINK-6082: ----------------------------- [~fhueske] [~shijinkui] [~Yuhong_kyo] [~sunjincheng121] [~twalthr] [~stefano.bortoli] The logic of the WHERE condition based on time would need to be implemented based on proccessingFunction (even if the same DataStreamCalcRule) would be used to identify this case. The key points would be that: 1) the accumulation of the data to be outputted would need to be treated just like any other aggregation. Therefore to support it a dedicated aggregation would be implemented to support retraction and accumulation of data. This would be used within the processingFunction to keep the data under focus 2) As retraction would also imply a signalling upstream, the key target is to consider this within the retraction branch of flink. > Support window definition for SQL Queries based on WHERE clause with time > condition > ----------------------------------------------------------------------------------- > > Key: FLINK-6082 > URL: https://issues.apache.org/jira/browse/FLINK-6082 > Project: Flink > Issue Type: New Feature > Components: Table API & SQL > Reporter: radu > > Time target: Proc Time > Calcite documentation refers to query examples where the (time) > boundaries are defined as condition within the WHERE clause. As Flink > community targets compatibility with Calcite, it makes sense to support > the definition of windows via this method as well as corresponding > aggregation on top of them. > SQL targeted query examples: > ---------------------------- > ```SELECT productId, count(\*) FROM stream1 WHERE proctime BETWEEN current\_ > timestamp - INTERVAL '1' HOUR AND current\_timestamp``` > General comment: > 1) window boundaries are defined as conditions in WHERE clause. > 2) For indicating the usage of different stream times, rowtime and > proctime can be used > 3) The boundaries are defined based on special construct provided by > calcite: current\_timestamp and time operations > Description: > ------------ > The logic of this operator is strictly related to supporting aggregates > over sliding windows defined with OVER > ([FLINK-5653](https://issues.apache.org/jira/browse/FLINK-5653), > [FLINK-5654](https://issues.apache.org/jira/browse/FLINK-5654), > [FLINK-5655](https://issues.apache.org/jira/browse/FLINK-5655), > [FLINK-5658](https://issues.apache.org/jira/browse/FLINK-5658), > [FLINK-5656](https://issues.apache.org/jira/browse/FLINK-5656)). In this > issue the design considered queries where the window is defined with the > syntax of OVER clause and aggregates are applied over this period. This > is similar in behavior with the only exception that the window > boundaries are defined with respect to the WHERE conditions. Besides > this the logic and the types of aggregates to be supported should be the > same (sum, count, avg, min, max). Supporting these types of query is > related to the pie chart problem tackled by calcite. > Similar as for the OVER windows, the construct should build rolling > windows (i.e., windows that are triggered and move with every incoming > event). > Functionality example > --------------------- > We exemplify below the functionality of the IN/Exists when working with > streams. > `SELECT a, count( * ) FROM stream1 WHERE proctime BETWEEN current_ timestamp > - INTERVAL '1' HOUR AND current_timestamp;` > ||IngestionTime(Event)|| Stream1|| Output|| > |10:00:01 |Id1,10 |Id1,1| > |10:02:00 |Id2,2 |Id2,2| > |11:25:00 |Id3,2 |Id3,1| > |12:03:00 |Id4,15 |Id4,2| > |12:05:00 |Id5,11 |Id5,3| > |12:56:00 |Id6,20 |Id6,3| > |...| > Implementation option > --------------------- > Considering that the query follows the same functionality as for the > aggregates over window, the implementation should follow the same > implementation as for the OVER clause. Considering that the WHERE > condition are typically related to timing, this means that in case of > one unbound boundary the > [FLINK-5658](https://issues.apache.org/jira/browse/FLINK-5658) should be > used, while for bounded time windows the > [FLINK-5654](https://issues.apache.org/jira/browse/FLINK-5654) design > should be used. > The window boundaries will be extracted from the WHERE condition. > The rule will not be mapped anymore to a LogicalWindow, which means that > the conversion to this would need to happen from the current > DataStreamCalc rule. In this sense, a dedicated condition will be added > such that in case the WHERE clause has time conditions, the operator > implementation of the Over clause (used in the previous issues) should > be used. > ``` > class DataStreamCalcRule > > ----------------------------------------------------------------------------------------------- > { > --- > ------------------------------------------------------------------------------------------- > > def convert(rel: RelNode): RelNode = { > val calc: LogicalCalc = rel.asInstanceOf\[LogicalCalc\] > val traitSet: RelTraitSet = > rel.getTraitSet.replace(DataStreamConvention.INSTANCE) > val convInput: RelNode = RelOptRule.convert(calc.getInput, > DataStreamConvention.INSTANCE) > > IF(WHERE contains TIME limits) > > { > > > IF(bounded) > > > > new DataStreamProcTimeTimeAggregate > > > > ELSE > > > > new DataStreamSlideEventTimeRowAgg > > > > } > > > > Else > > **{** > > new DataStreamCalc( > rel.getCluster, > traitSet, > convInput, > rel.getRowType, > calc.getProgram, > description) > } > > } > } > > ----------------------------------------------------------------------------------------------- > ``` -- This message was sent by Atlassian JIRA (v6.3.15#6346)