[ https://issues.apache.org/jira/browse/FLINK-5654?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15948651#comment-15948651 ]
ASF GitHub Bot commented on FLINK-5654: --------------------------------------- Github user fhueske commented on a diff in the pull request: https://github.com/apache/flink/pull/3641#discussion_r108867389 --- Diff: flink-libraries/flink-table/src/main/scala/org/apache/flink/table/runtime/aggregate/ProcTimeBoundedProcessingOverProcessFunction.scala --- @@ -0,0 +1,166 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one + * or more contributor license agreements. See the NOTICE file + * distributed with this work for additional information + * regarding copyright ownership. The ASF licenses this file + * to you under the Apache License, Version 2.0 (the + * "License"); you may not use this file except in compliance + * with the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.flink.table.runtime.aggregate + +import org.apache.flink.api.common.state.{ ListState, ListStateDescriptor } +import org.apache.flink.api.java.typeutils.RowTypeInfo +import org.apache.flink.configuration.Configuration +import org.apache.flink.runtime.state.{ FunctionInitializationContext, FunctionSnapshotContext } +import org.apache.flink.streaming.api.functions.ProcessFunction +import org.apache.flink.table.functions.{ Accumulator, AggregateFunction } +import org.apache.flink.types.Row +import org.apache.flink.util.{ Collector, Preconditions } +import org.apache.flink.api.common.state.ValueState +import org.apache.flink.api.common.state.ValueStateDescriptor +import scala.util.control.Breaks._ +import org.apache.flink.api.java.tuple.{ Tuple2 => JTuple2 } +import org.apache.flink.api.common.state.MapState +import org.apache.flink.api.common.state.MapStateDescriptor +import org.apache.flink.api.common.typeinfo.TypeInformation +import org.apache.flink.api.java.typeutils.ListTypeInfo +import java.util.{ ArrayList, LinkedList, List => JList } +import org.apache.flink.api.common.typeinfo.BasicTypeInfo + +/** + * Process Function used for the aggregate in bounded proc-time OVER window + * [[org.apache.flink.streaming.api.datastream.DataStream]] + * + * @param aggregates the list of all [[org.apache.flink.table.functions.AggregateFunction]] + * used for this aggregation + * @param aggFields the position (in the input Row) of the input value for each aggregate + * @param forwardedFieldCount Is used to indicate fields in the current element to forward + * @param rowTypeInfo Is used to indicate the field schema + * @param timeBoundary Is used to indicate the processing time boundaries + * @param inputType It is used to mark the Row type of the input + */ +class ProcTimeBoundedProcessingOverProcessFunction( + private val aggregates: Array[AggregateFunction[_]], + private val aggFields: Array[Int], + private val forwardedFieldCount: Int, + private val rowTypeInfo: RowTypeInfo, + private val timeBoundary: Long, + private val inputType: TypeInformation[Row]) + extends ProcessFunction[Row, Row] { + + Preconditions.checkNotNull(aggregates) + Preconditions.checkNotNull(aggFields) + Preconditions.checkArgument(aggregates.length == aggFields.length) + + private var output: Row = _ + private var accumulatorState: ValueState[Row] = _ + private var rowMapState: MapState[Long, JList[Row]] = _ + + override def open(config: Configuration) { + output = new Row(forwardedFieldCount + aggregates.length) + + // We keep the elements received in a list state + // together with the ingestion time in the operator + val rowListTypeInfo: TypeInformation[JList[Row]] = + new ListTypeInfo[Row](inputType).asInstanceOf[TypeInformation[JList[Row]]] + val mapStateDescriptor: MapStateDescriptor[Long, JList[Row]] = + new MapStateDescriptor[Long, JList[Row]]("rowmapstate", + BasicTypeInfo.LONG_TYPE_INFO.asInstanceOf[TypeInformation[Long]], rowListTypeInfo) + rowMapState = getRuntimeContext.getMapState(mapStateDescriptor) + + val stateDescriptor: ValueStateDescriptor[Row] = + new ValueStateDescriptor[Row]("overState", rowTypeInfo) + accumulatorState = getRuntimeContext.getState(stateDescriptor) + } + + override def processElement( + input: Row, + ctx: ProcessFunction[Row, Row]#Context, + out: Collector[Row]): Unit = { + + val currentTime = ctx.timerService().currentProcessingTime() + //buffer the event incoming event + + var i = 0 + + //initialize the accumulators + var accumulators = accumulatorState.value() + + if (null == accumulators) { + accumulators = new Row(aggregates.length) + i = 0 + while (i < aggregates.length) { + accumulators.setField(i, aggregates(i).createAccumulator()) + i += 1 + } + } + + //set the fields of the last event to carry on with the aggregates + i = 0 + while (i < forwardedFieldCount) { + output.setField(i, input.getField(i)) + i += 1 + } + + //update the elements to be removed and retract them from aggregators + val limit = currentTime - timeBoundary + + // we iterate through all elements in the window buffer based on timestampt keys + // when we find timestamps that are out of interest, we need to get the corresponding elements + // and eliminate them. Multiple elements can be received at the same timestamp + val iter = rowMapState.keys.iterator + var markToRemove = new ArrayList[Long]() + while (iter.hasNext()) { + val elementKey = iter.next + if (elementKey < limit) { + val elementsRemove = rowMapState.get(elementKey) + val iterRemove = elementsRemove.iterator() --- End diff -- We would save the `Iterator` object instance. Probably micro optimization, but since we iterate most lists with `while(i < x)` we could do the same here. > Add processing time OVER RANGE BETWEEN x PRECEDING aggregation to SQL > --------------------------------------------------------------------- > > Key: FLINK-5654 > URL: https://issues.apache.org/jira/browse/FLINK-5654 > Project: Flink > Issue Type: Sub-task > Components: Table API & SQL > Reporter: Fabian Hueske > Assignee: radu > > The goal of this issue is to add support for OVER RANGE aggregations on > processing time streams to the SQL interface. > Queries similar to the following should be supported: > {code} > SELECT > a, > SUM(b) OVER (PARTITION BY c ORDER BY procTime() RANGE BETWEEN INTERVAL '1' > HOUR PRECEDING AND CURRENT ROW) AS sumB, > MIN(b) OVER (PARTITION BY c ORDER BY procTime() RANGE BETWEEN INTERVAL '1' > HOUR PRECEDING AND CURRENT ROW) AS minB > FROM myStream > {code} > The following restrictions should initially apply: > - All OVER clauses in the same SELECT clause must be exactly the same. > - The PARTITION BY clause is optional (no partitioning results in single > threaded execution). > - The ORDER BY clause may only have procTime() as parameter. procTime() is a > parameterless scalar function that just indicates processing time mode. > - UNBOUNDED PRECEDING is not supported (see FLINK-5657) > - FOLLOWING is not supported. > The restrictions will be resolved in follow up issues. If we find that some > of the restrictions are trivial to address, we can add the functionality in > this issue as well. > This issue includes: > - Design of the DataStream operator to compute OVER ROW aggregates > - Translation from Calcite's RelNode representation (LogicalProject with > RexOver expression). -- This message was sent by Atlassian JIRA (v6.3.15#6346)