[ https://issues.apache.org/jira/browse/FLINK-5655?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15945508#comment-15945508 ]
ASF GitHub Bot commented on FLINK-5655: --------------------------------------- Github user fhueske commented on a diff in the pull request: https://github.com/apache/flink/pull/3629#discussion_r108455167 --- Diff: flink-libraries/flink-table/src/main/scala/org/apache/flink/table/runtime/aggregate/RangeClauseBoundedOverProcessFunction.scala --- @@ -0,0 +1,213 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one + * or more contributor license agreements. See the NOTICE file + * distributed with this work for additional information + * regarding copyright ownership. The ASF licenses this file + * to you under the Apache License, Version 2.0 (the + * "License"); you may not use this file except in compliance + * with the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.flink.table.runtime.aggregate + +import java.util.{List => JList, ArrayList => JArrayList} + +import org.apache.flink.api.common.state._ +import org.apache.flink.api.common.typeinfo.{BasicTypeInfo, TypeInformation} +import org.apache.flink.api.java.typeutils.{ListTypeInfo, RowTypeInfo} +import org.apache.flink.configuration.Configuration +import org.apache.flink.streaming.api.functions.ProcessFunction +import org.apache.flink.table.functions.{Accumulator, AggregateFunction} +import org.apache.flink.types.Row +import org.apache.flink.util.{Collector, Preconditions} + +/** + * Process Function for RANGE clause event-time bounded OVER window + * + * @param aggregates the list of all [[AggregateFunction]] used for this aggregation + * @param aggFields the position (in the input Row) of the input value for each aggregate + * @param forwardedFieldCount the count of forwarded fields. + * @param aggregationStateType the row type info of aggregation + * @param inputRowType the row type info of input row + * @param precedingOffset the preceding offset + */ +class RangeClauseBoundedOverProcessFunction( + private val aggregates: Array[AggregateFunction[_]], + private val aggFields: Array[Int], + private val forwardedFieldCount: Int, + private val aggregationStateType: RowTypeInfo, + private val inputRowType: RowTypeInfo, + private val precedingOffset: Long) + extends ProcessFunction[Row, Row] { + + Preconditions.checkNotNull(aggregates) + Preconditions.checkNotNull(aggFields) + Preconditions.checkArgument(aggregates.length == aggFields.length) + Preconditions.checkNotNull(forwardedFieldCount) + Preconditions.checkNotNull(aggregationStateType) + Preconditions.checkNotNull(precedingOffset) + + private var output: Row = _ + + // the state which keeps the last triggering timestamp + private var lastTriggeringTsState: ValueState[Long] = _ + + // the state which used to materialize the accumulator for incremental calculation + private var accumulatorState: ValueState[Row] = _ + + // the state which keeps all the data that are not expired. + // The first element (as the mapState key) of the tuple is the time stamp. Per each time stamp, + // the second element of tuple is a list that contains the entire data of all the rows belonging + // to this time stamp. + private var dataState: MapState[Long, JList[Row]] = _ + + override def open(config: Configuration) { + + output = new Row(forwardedFieldCount + aggregates.length) + + val lastTriggeringTsDescriptor: ValueStateDescriptor[Long] = + new ValueStateDescriptor[Long]("lastTriggeringTsState", classOf[Long]) + lastTriggeringTsState = getRuntimeContext.getState(lastTriggeringTsDescriptor) + + val accumulatorStateDescriptor = + new ValueStateDescriptor[Row]("accumulatorState", aggregationStateType) + accumulatorState = getRuntimeContext.getState(accumulatorStateDescriptor) + + val keyTypeInformation: TypeInformation[Long] = + BasicTypeInfo.LONG_TYPE_INFO.asInstanceOf[TypeInformation[Long]] + val valueTypeInformation: TypeInformation[JList[Row]] = new ListTypeInfo[Row](inputRowType) + + val mapStateDescriptor: MapStateDescriptor[Long, JList[Row]] = + new MapStateDescriptor[Long, JList[Row]]( + "dataState", + keyTypeInformation, + valueTypeInformation) + + dataState = getRuntimeContext.getMapState(mapStateDescriptor) + + } + + override def processElement( + input: Row, + ctx: ProcessFunction[Row, Row]#Context, + out: Collector[Row]): Unit = { + + // triggering timestamp for trigger calculation + val triggeringTs = ctx.timestamp + + val lastTriggeringTs = lastTriggeringTsState.value + + // check if the data is expired, if not, save the data and register event time timer + if (triggeringTs > lastTriggeringTs) { + val data = dataState.get(triggeringTs) + if (null != data) { + data.add(input) + dataState.put(triggeringTs, data) + } else { + val data = new JArrayList[Row] + data.add(input) + dataState.put(triggeringTs, data) + // register event time timer + ctx.timerService.registerEventTimeTimer(triggeringTs) + } + } + } + + override def onTimer( + timestamp: Long, + ctx: ProcessFunction[Row, Row]#OnTimerContext, + out: Collector[Row]): Unit = { + // gets all window data from state for the calculation + val inputs: JList[Row] = dataState.get(timestamp) + + if (null != inputs) { + + var accumulators = accumulatorState.value + var dataListIndex = 0 + var aggregatesIndex = 0 + + // initialize when first run or failover recovery per key + if (null == accumulators) { + accumulators = new Row(aggregates.length) + aggregatesIndex = 0 + while (aggregatesIndex < aggregates.length) { + accumulators.setField(aggregatesIndex, aggregates(aggregatesIndex).createAccumulator()) + aggregatesIndex += 1 + } + } + + // keep up timestamps of retract data + val retractTsList: JList[Long] = new JArrayList[Long] --- End diff -- does this in worst case require as much memory as the list in the unbounded case? > Add event time OVER RANGE BETWEEN x PRECEDING aggregation to SQL > ---------------------------------------------------------------- > > Key: FLINK-5655 > URL: https://issues.apache.org/jira/browse/FLINK-5655 > Project: Flink > Issue Type: Sub-task > Components: Table API & SQL > Reporter: Fabian Hueske > Assignee: sunjincheng > > The goal of this issue is to add support for OVER RANGE aggregations on event > time streams to the SQL interface. > Queries similar to the following should be supported: > {code} > SELECT > a, > SUM(b) OVER (PARTITION BY c ORDER BY rowTime() RANGE BETWEEN INTERVAL '1' > HOUR PRECEDING AND CURRENT ROW) AS sumB, > MIN(b) OVER (PARTITION BY c ORDER BY rowTime() RANGE BETWEEN INTERVAL '1' > HOUR PRECEDING AND CURRENT ROW) AS minB > FROM myStream > {code} > The following restrictions should initially apply: > - All OVER clauses in the same SELECT clause must be exactly the same. > - The PARTITION BY clause is optional (no partitioning results in single > threaded execution). > - The ORDER BY clause may only have rowTime() as parameter. rowTime() is a > parameterless scalar function that just indicates processing time mode. > - UNBOUNDED PRECEDING is not supported (see FLINK-5658) > - FOLLOWING is not supported. > The restrictions will be resolved in follow up issues. If we find that some > of the restrictions are trivial to address, we can add the functionality in > this issue as well. > This issue includes: > - Design of the DataStream operator to compute OVER ROW aggregates > - Translation from Calcite's RelNode representation (LogicalProject with > RexOver expression). -- This message was sent by Atlassian JIRA (v6.3.15#6346)