[ https://issues.apache.org/jira/browse/FLINK-5658?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15938734#comment-15938734 ]
ASF GitHub Bot commented on FLINK-5658: --------------------------------------- Github user fhueske commented on a diff in the pull request: https://github.com/apache/flink/pull/3386#discussion_r107712950 --- Diff: flink-libraries/flink-table/src/main/scala/org/apache/flink/table/runtime/aggregate/UnboundedEventTimeOverProcessFunction.scala --- @@ -0,0 +1,200 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one + * or more contributor license agreements. See the NOTICE file + * distributed with this work for additional information + * regarding copyright ownership. The ASF licenses this file + * to you under the Apache License, Version 2.0 (the + * "License"); you may not use this file except in compliance + * with the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.flink.table.runtime.aggregate + +import java.util.{ArrayList, LinkedList, List => JList} + +import org.apache.flink.api.common.typeinfo.{BasicTypeInfo, TypeInformation} +import org.apache.flink.configuration.Configuration +import org.apache.flink.types.Row +import org.apache.flink.streaming.api.functions.ProcessFunction +import org.apache.flink.util.{Collector, Preconditions} +import org.apache.flink.api.common.state._ +import org.apache.flink.api.java.typeutils.{ListTypeInfo} +import org.apache.flink.streaming.api.operators.TimestampedCollector +import org.apache.flink.table.functions.{Accumulator, AggregateFunction} + + +/** + * A ProcessFunction to support unbounded event-time over-window + * + * @param aggregates the aggregate functions + * @param aggFields the filed index which the aggregate functions use + * @param forwardedFieldCount the input fields count + * @param intermediateType the intermediate row tye which the state saved + * @param inputType the input row tye which the state saved + * + */ +class UnboundedEventTimeOverProcessFunction( + private val aggregates: Array[AggregateFunction[_]], + private val aggFields: Array[Int], + private val forwardedFieldCount: Int, + private val intermediateType: TypeInformation[Row], + private val inputType: TypeInformation[Row]) + extends ProcessFunction[Row, Row]{ + + Preconditions.checkNotNull(aggregates) + Preconditions.checkNotNull(aggFields) + Preconditions.checkArgument(aggregates.length == aggFields.length) + + private var output: Row = _ + private var accumulatorState: ValueState[Row] = _ + private var rowMapState: MapState[Long, JList[Row]] = _ + private var sortList: LinkedList[Long] = _ + + + override def open(config: Configuration) { + output = new Row(forwardedFieldCount + aggregates.length) + sortList = new LinkedList[Long]() + + val stateDescriptor: ValueStateDescriptor[Row] = + new ValueStateDescriptor[Row]("accumulatorstate", intermediateType) + accumulatorState = getRuntimeContext.getState[Row](stateDescriptor) + + val rowListTypeInfo: TypeInformation[JList[Row]] = + new ListTypeInfo[Row](inputType).asInstanceOf[TypeInformation[JList[Row]]] + val mapStateDescriptor: MapStateDescriptor[Long, JList[Row]] = + new MapStateDescriptor[Long, JList[Row]]("rowmapstate", + BasicTypeInfo.LONG_TYPE_INFO.asInstanceOf[TypeInformation[Long]], rowListTypeInfo) + rowMapState = getRuntimeContext.getMapState(mapStateDescriptor) + } + + /** + * Process one element from the input stream, not emit the output + * + * @param input The input value. + * @param ctx The ctx to register timer or get current time + * @param out The collector for returning result values. + * + */ + override def processElement( + input: Row, + ctx: ProcessFunction[Row, Row]#Context, + out: Collector[Row]): Unit = { + + // discard later record + if (ctx.timestamp() >= ctx.timerService().currentWatermark()) { + // ensure every key just register on timer + ctx.timerService.registerEventTimeTimer(ctx.timerService.currentWatermark + 1) + + val rowList = + if (rowMapState.contains(ctx.timestamp)) rowMapState.get(ctx.timestamp) + else new ArrayList[Row]() + rowList.add(input) + rowMapState.put(ctx.timestamp, rowList) + } + } + + /** + * Called when a timer set fires, sort current records according the timestamp + * and emit the output + * + * @param timestamp The timestamp of the firing timer. + * @param ctx The ctx to register timer or get current time + * @param out The collector for returning result values. + */ + override def onTimer( + timestamp: Long, + ctx: ProcessFunction[Row, Row]#OnTimerContext, + out: Collector[Row]): Unit = { + + Preconditions.checkArgument(out.isInstanceOf[TimestampedCollector[Row]]) + val collector = out.asInstanceOf[TimestampedCollector[Row]] + + val mapIter = rowMapState.iterator --- End diff -- we should use `rowMapState.keys` to only retrieve the keys. If we iterate over the entries, also the values will be deserialized. > Add event time OVER RANGE BETWEEN UNBOUNDED PRECEDING aggregation to SQL > ------------------------------------------------------------------------ > > Key: FLINK-5658 > URL: https://issues.apache.org/jira/browse/FLINK-5658 > Project: Flink > Issue Type: Sub-task > Components: Table API & SQL > Reporter: Fabian Hueske > Assignee: Yuhong Hong > > The goal of this issue is to add support for OVER RANGE aggregations on event > time streams to the SQL interface. > Queries similar to the following should be supported: > {code} > SELECT > a, > SUM(b) OVER (PARTITION BY c ORDER BY rowTime() RANGE BETWEEN UNBOUNDED > PRECEDING AND CURRENT ROW) AS sumB, > MIN(b) OVER (PARTITION BY c ORDER BY rowTime() RANGE BETWEEN UNBOUNDED > PRECEDING AND CURRENT ROW) AS minB > FROM myStream > {code} > The following restrictions should initially apply: > - All OVER clauses in the same SELECT clause must be exactly the same. > - The PARTITION BY clause is optional (no partitioning results in single > threaded execution). > - The ORDER BY clause may only have rowTime() as parameter. rowTime() is a > parameterless scalar function that just indicates processing time mode. > - bounded PRECEDING is not supported (see FLINK-5655) > - FOLLOWING is not supported. > The restrictions will be resolved in follow up issues. If we find that some > of the restrictions are trivial to address, we can add the functionality in > this issue as well. > This issue includes: > - Design of the DataStream operator to compute OVER ROW aggregates > - Translation from Calcite's RelNode representation (LogicalProject with > RexOver expression). -- This message was sent by Atlassian JIRA (v6.3.15#6346)