Github user fhueske commented on a diff in the pull request: https://github.com/apache/flink/pull/3547#discussion_r106519205 --- Diff: flink-libraries/flink-table/src/main/scala/org/apache/flink/table/plan/nodes/datastream/DataStreamOverAggregate.scala --- @@ -130,32 +142,76 @@ class DataStreamOverAggregate( val rowTypeInfo = FlinkTypeFactory.toInternalRowTypeInfo(getRowType).asInstanceOf[RowTypeInfo] val result: DataStream[Row] = - // partitioned aggregation - if (partitionKeys.nonEmpty) { - val processFunction = AggregateUtil.CreateUnboundedProcessingOverProcessFunction( - namedAggregates, - inputType) + // partitioned aggregation + if (partitionKeys.nonEmpty) { + val processFunction = AggregateUtil.CreateUnboundedProcessingOverProcessFunction( + namedAggregates, + inputType) - inputDS + inputDS .keyBy(partitionKeys: _*) .process(processFunction) .returns(rowTypeInfo) .name(aggOpName) .asInstanceOf[DataStream[Row]] - } - // non-partitioned aggregation - else { - val processFunction = AggregateUtil.CreateUnboundedProcessingOverProcessFunction( - namedAggregates, - inputType, - false) - - inputDS - .process(processFunction).setParallelism(1).setMaxParallelism(1) - .returns(rowTypeInfo) - .name(aggOpName) - .asInstanceOf[DataStream[Row]] - } + } // non-partitioned aggregation + else { + val processFunction = AggregateUtil.CreateUnboundedProcessingOverProcessFunction( + namedAggregates, + inputType, + false) + + inputDS + .process(processFunction).setParallelism(1).setMaxParallelism(1) + .returns(rowTypeInfo) + .name(aggOpName) + .asInstanceOf[DataStream[Row]] + } + result + } + + def createBoundedAndCurrentRowProcessingTimeOverWindow( + inputDS: DataStream[Row]): DataStream[Row] = { + + val overWindow: Group = logicWindow.groups.get(0) + val partitionKeys: Array[Int] = overWindow.keys.toArray + val namedAggregates: Seq[CalcitePair[AggregateCall, String]] = generateNamedAggregates + + // get the output types + val rowTypeInfo = FlinkTypeFactory.toInternalRowTypeInfo(getRowType).asInstanceOf[RowTypeInfo] + + val lowerbound: Int = AggregateUtil.getLowerBoundary( + logicWindow.constants, + overWindow.lowerBound, + getInput()) + + val result: DataStream[Row] = + // partitioned aggregation + if (partitionKeys.nonEmpty) { + val windowFunction = AggregateUtil.CreateBoundedProcessingOverWindowFunction( + namedAggregates, + inputType) + inputDS + .keyBy(partitionKeys: _*) + .countWindow(lowerbound,1) + .apply(windowFunction) + .returns(rowTypeInfo) + .name(aggOpName) + .asInstanceOf[DataStream[Row]] + } // global non-partitioned aggregation + else { + val windowFunction = AggregateUtil.CreateBoundedProcessingOverGlobalWindowFunction( + namedAggregates, + inputType) + + inputDS + .countWindowAll(lowerbound,1) --- End diff -- From the [MS SQL Server documentation](https://msdn.microsoft.com/en-us/library/ms189461.aspx): > For example, ROWS BETWEEN 2 PRECEDING AND CURRENT ROW means that the window of rows that the function operates on is three rows in size, starting with 2 rows preceding until and including the current row. So, since `lowerBound` is already `AggregateUtil.getLowerBoundary(...) + 1`, we should be good.
--- If your project is set up for it, you can reply to this email and have your reply appear on GitHub as well. If your project does not have this feature enabled and wishes so, or if the feature is enabled but not working, please contact infrastructure at infrastruct...@apache.org or file a JIRA ticket with INFRA. ---