gustavodemorais commented on code in PR #26313:
URL: https://github.com/apache/flink/pull/26313#discussion_r2100366026


##########
flink-table/flink-table-runtime/src/main/java/org/apache/flink/table/runtime/operators/join/stream/state/MultiJoinStateViews.java:
##########
@@ -0,0 +1,359 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one
+ * or more contributor license agreements.  See the NOTICE file
+ * distributed with this work for additional information
+ * regarding copyright ownership.  The ASF licenses this file
+ * to you under the Apache License, Version 2.0 (the
+ * "License"); you may not use this file except in compliance
+ * with the License.  You may obtain a copy of the License at
+ *
+ *     http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.flink.table.runtime.operators.join.stream.state;
+
+import org.apache.flink.api.common.functions.RuntimeContext;
+import org.apache.flink.api.common.state.MapState;
+import org.apache.flink.api.common.state.MapStateDescriptor;
+import org.apache.flink.api.common.state.StateTtlConfig;
+import org.apache.flink.api.common.typeinfo.TypeInformation;
+import org.apache.flink.api.common.typeinfo.Types;
+import org.apache.flink.api.java.functions.KeySelector;
+import org.apache.flink.table.data.RowData;
+import 
org.apache.flink.table.runtime.operators.join.stream.utils.JoinInputSideSpec;
+import org.apache.flink.table.runtime.typeutils.InternalTypeInfo;
+import org.apache.flink.types.RowKind;
+import org.apache.flink.util.IterableIterator;
+
+import java.util.ArrayList;
+import java.util.Collections;
+import java.util.HashMap;
+import java.util.Iterator;
+import java.util.List;
+import java.util.Map;
+import java.util.NoSuchElementException;
+
+import static 
org.apache.flink.table.runtime.util.StateConfigUtil.createTtlConfig;
+import static org.apache.flink.util.Preconditions.checkNotNull;
+
+/**
+ * Factory class to create different implementations of {@link 
MultiJoinStateView} based on the
+ * characteristics described in {@link JoinInputSideSpec}.
+ *
+ * <p>Each state view uses a {@link MapState} where the primary key is the 
`mapKey` derived from the
+ * join conditions (via {@link
+ * 
org.apache.flink.table.runtime.operators.join.stream.keyselector.JoinKeyExtractor}).
 The value
+ * stored within this map depends on whether the input side has a unique key 
and how it relates to
+ * the join key, optimizing storage and access patterns.
+ */
+public final class MultiJoinStateViews {
+
+    /** Creates a {@link MultiJoinStateView} depends on {@link 
JoinInputSideSpec}. */
+    public static MultiJoinStateView create(
+            RuntimeContext ctx,
+            String stateName,
+            JoinInputSideSpec inputSideSpec,
+            InternalTypeInfo<RowData> mapKeyType, // Type info for the outer 
map key
+            InternalTypeInfo<RowData> recordType,
+            long retentionTime) {
+        StateTtlConfig ttlConfig = createTtlConfig(retentionTime);
+
+        if (inputSideSpec.hasUniqueKey()) {
+            if (inputSideSpec.joinKeyContainsUniqueKey()) {
+                return new JoinKeyContainsUniqueKey(
+                        ctx, stateName, mapKeyType, recordType, ttlConfig);
+            } else {
+                return new InputSideHasUniqueKey(
+                        ctx,
+                        stateName,
+                        mapKeyType,
+                        recordType,
+                        inputSideSpec.getUniqueKeyType(),
+                        inputSideSpec.getUniqueKeySelector(),
+                        ttlConfig);
+            }
+        } else {
+            return new InputSideHasNoUniqueKey(ctx, stateName, mapKeyType, 
recordType, ttlConfig);
+        }
+    }
+
+    /**
+     * Creates a {@link MapStateDescriptor} with the given parameters and 
applies TTL configuration.
+     *
+     * @param <K> Key type
+     * @param <V> Value type
+     * @param stateName Unique name for the state
+     * @param keyTypeInfo Type information for the key
+     * @param valueTypeInfo Type information for the value
+     * @param ttlConfig State TTL configuration
+     * @return Configured MapStateDescriptor
+     */
+    private static <K, V> MapStateDescriptor<K, V> createStateDescriptor(
+            String stateName,
+            TypeInformation<K> keyTypeInfo,
+            TypeInformation<V> valueTypeInfo,
+            StateTtlConfig ttlConfig) {
+        MapStateDescriptor<K, V> descriptor =
+                new MapStateDescriptor<>(stateName, keyTypeInfo, 
valueTypeInfo);
+        if (ttlConfig.isEnabled()) {
+            descriptor.enableTimeToLive(ttlConfig);
+        }
+        return descriptor;
+    }
+
+    // 
------------------------------------------------------------------------------------
+    // Multi Join State View Implementations
+    // 
------------------------------------------------------------------------------------
+
+    /**
+     * State view for input sides where the unique key is fully contained 
within the join key.
+     *
+     * <p>Stores data as {@code MapState<MapKey, Record>}.
+     */
+    private static final class JoinKeyContainsUniqueKey implements 
MultiJoinStateView {
+
+        // stores record in the mapping <MapKey, Record>
+        private final MapState<RowData, RowData> recordState;
+        private final List<RowData> reusedList;
+
+        private JoinKeyContainsUniqueKey(
+                RuntimeContext ctx,
+                final String stateName,
+                final InternalTypeInfo<RowData> mapKeyType,
+                final InternalTypeInfo<RowData> recordType,
+                final StateTtlConfig ttlConfig) {
+
+            MapStateDescriptor<RowData, RowData> recordStateDesc =
+                    createStateDescriptor(stateName, mapKeyType, recordType, 
ttlConfig);
+
+            this.recordState = ctx.getMapState(recordStateDesc);
+            // the result records always not more than 1 per mapKey
+            this.reusedList = new ArrayList<>(1);
+        }
+
+        @Override
+        public void addRecord(RowData mapKey, RowData record) throws Exception 
{
+            recordState.put(mapKey, record);
+        }
+
+        @Override
+        public void retractRecord(RowData mapKey, RowData record) throws 
Exception {
+            // Only one record is kept per mapKey, remove it directly.
+            recordState.remove(mapKey);
+        }
+
+        @Override
+        public Iterable<RowData> getRecords(RowData mapKey) throws Exception {
+            reusedList.clear();
+            RowData record = recordState.get(mapKey);
+            if (record != null) {
+                reusedList.add(record);
+            }
+            return reusedList;
+        }
+
+        @Override
+        public void cleanup(RowData mapKey) throws Exception {
+            recordState.remove(mapKey);
+        }
+    }
+
+    /**
+     * State view for input sides that have a unique key, but it differs from 
the join key.
+     *
+     * <p>Stores data as {@code MapState<MapKey, Map<UK, Record>>}.
+     */
+    private static final class InputSideHasUniqueKey implements 
MultiJoinStateView {
+
+        // stores map in the mapping <MapKey, Map<UK, Record>>
+        private final MapState<RowData, Map<RowData, RowData>> recordState;
+        private final KeySelector<RowData, RowData> uniqueKeySelector;
+
+        private InputSideHasUniqueKey(
+                RuntimeContext ctx,
+                final String stateName,
+                final InternalTypeInfo<RowData> mapKeyType,
+                final InternalTypeInfo<RowData> recordType,
+                final InternalTypeInfo<RowData> uniqueKeyType,
+                final KeySelector<RowData, RowData> uniqueKeySelector,
+                final StateTtlConfig ttlConfig) {
+            checkNotNull(uniqueKeyType);
+            checkNotNull(uniqueKeySelector);
+            this.uniqueKeySelector = uniqueKeySelector;
+
+            TypeInformation<Map<RowData, RowData>> mapValueTypeInfo =
+                    Types.MAP(uniqueKeyType, recordType); // UK is the key in 
the inner map
+
+            MapStateDescriptor<RowData, Map<RowData, RowData>> recordStateDesc 
=
+                    createStateDescriptor(stateName, mapKeyType, 
mapValueTypeInfo, ttlConfig);
+
+            this.recordState = ctx.getMapState(recordStateDesc);
+        }
+
+        @Override
+        public void addRecord(RowData mapKey, RowData record) throws Exception 
{
+            RowData uniqueKey = uniqueKeySelector.getKey(record);
+            Map<RowData, RowData> uniqueKeyToRecordMap = 
recordState.get(mapKey);
+            if (uniqueKeyToRecordMap == null) {
+                uniqueKeyToRecordMap = new HashMap<>();
+            }
+            uniqueKeyToRecordMap.put(uniqueKey, record);
+            recordState.put(mapKey, uniqueKeyToRecordMap);
+        }
+
+        @Override
+        public void retractRecord(RowData mapKey, RowData record) throws 
Exception {
+            RowData uniqueKey = uniqueKeySelector.getKey(record);
+            Map<RowData, RowData> uniqueKeyToRecordMap = 
recordState.get(mapKey);
+            if (uniqueKeyToRecordMap != null) {
+                uniqueKeyToRecordMap.remove(uniqueKey);
+                if (uniqueKeyToRecordMap.isEmpty()) {
+                    // Clean up the entry for mapKey if the inner map becomes 
empty
+                    recordState.remove(mapKey);
+                } else {
+                    recordState.put(mapKey, uniqueKeyToRecordMap);
+                }
+            }
+            // ignore uniqueKeyToRecordMap == null
+        }
+
+        @Override
+        public Iterable<RowData> getRecords(RowData mapKey) throws Exception {
+            Map<RowData, RowData> uniqueKeyToRecordMap = 
recordState.get(mapKey);
+            if (uniqueKeyToRecordMap == null) {
+                return Collections.emptyList();
+            } else {
+                // Return the values (records) from the inner map
+                return uniqueKeyToRecordMap.values();
+            }
+        }
+
+        @Override
+        public void cleanup(RowData mapKey) throws Exception {
+            recordState.remove(mapKey);
+        }
+    }
+
+    /**
+     * State view for input sides that do not have a unique key (multi-set 
semantics).
+     *
+     * <p>Stores data as {@code MapState<MapKey, Map<Record, Count>>}.
+     */
+    private static final class InputSideHasNoUniqueKey implements 
MultiJoinStateView {
+
+        // stores map in the mapping <MapKey, Map<Record, Count>>
+        private final MapState<RowData, Map<RowData, Integer>> recordState;

Review Comment:
   > Thank you! I understand now. But I still don't get why we don't reuse 
JoinRecordStateViews though. I don't see any drawbacks or restrictions to do 
this. Please let me know if I missing something.
   
   InputSideHasNoUniqueKey in JoinRecordStateViews can simply use MapState<Row, 
Count> since the operator key is already the join key. Our Multi-Join Operator 
has the common key as the operator key, and not necessarily the join key, so we 
need to have MapState<JoinKey, Map<Row, Count>>. We need this extra level to be 
able to do 
[state.getRecords(joinKey)](https://github.com/apache/flink/blob/f0e6cd145d89dd4dde32e3724e57aa0167fecd26/flink-table/flink-table-runtime/src/main/java/org/apache/flink/table/runtime/operators/join/stream/StreamingMultiJoinOperator.java#L564.)and
 filter down the records to reprocess. How would we be able to do that if we 
simply use MapState<Row, Count>?
   
   > Given this, maybe we should consider this example as "common partition 
key" violation, at least on the first implementation iteration? Let me know 
your thoughts on it, please.
   
   This would restrict the uses cases drastically. We would only work for 
multiple joins that use exactly the same key across all levels. The common 
partition key is already a somewhat hard restriction and if we allow multiple 
joins that join on the exact same keys, we'll probably address a little amount 
of real-world use cases. One more example that wouldn't also be supported `T1 
JOIN T2 ON T1.key = T2.key JOIN T3 ON T1.key = T3.key  AND T2.k99 == T3.k99`. 
The multi-join will be disabled by default first, and users should enable it if 
their common joining key has a considerable distribution that matches their 
expected parallelism. That should be often the case for joins using primary 
keys, which have high cardinality. Another possibility in a second interaction 
would be creating more config options to control this, if we think it's 
necessary. What do you think?
   
   Thanks for the reply/discussion @SteveStevenpoor.



-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: issues-unsubscr...@flink.apache.org

For queries about this service, please contact Infrastructure at:
us...@infra.apache.org

Reply via email to