noorall commented on code in PR #25552:
URL: https://github.com/apache/flink/pull/25552#discussion_r1906812521


##########
flink-runtime/src/main/java/org/apache/flink/runtime/scheduler/adaptivebatch/util/PointwiseVertexInputInfoComputer.java:
##########
@@ -0,0 +1,172 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one
+ * or more contributor license agreements.  See the NOTICE file
+ * distributed with this work for additional information
+ * regarding copyright ownership.  The ASF licenses this file
+ * to you under the Apache License, Version 2.0 (the
+ * "License"); you may not use this file except in compliance
+ * with the License.  You may obtain a copy of the License at
+ *
+ *     http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.flink.runtime.scheduler.adaptivebatch.util;
+
+import org.apache.flink.runtime.executiongraph.IndexRange;
+import org.apache.flink.runtime.executiongraph.JobVertexInputInfo;
+import org.apache.flink.runtime.executiongraph.VertexInputInfoComputationUtils;
+import org.apache.flink.runtime.jobgraph.IntermediateDataSetID;
+import org.apache.flink.runtime.scheduler.adaptivebatch.BlockingInputInfo;
+
+import org.slf4j.Logger;
+import org.slf4j.LoggerFactory;
+
+import java.util.ArrayList;
+import java.util.HashMap;
+import java.util.List;
+import java.util.Map;
+import java.util.Optional;
+
+import static 
org.apache.flink.runtime.scheduler.adaptivebatch.util.SubpartitionSlice.createSubpartitionSlice;
+import static 
org.apache.flink.runtime.scheduler.adaptivebatch.util.VertexParallelismAndInputInfosDeciderUtils.createdExecutionVertexInputInfosForNonBroadcast;
+import static 
org.apache.flink.runtime.scheduler.adaptivebatch.util.VertexParallelismAndInputInfosDeciderUtils.isLegalParallelism;
+import static 
org.apache.flink.runtime.scheduler.adaptivebatch.util.VertexParallelismAndInputInfosDeciderUtils.tryComputeSubpartitionSliceRange;
+import static org.apache.flink.util.Preconditions.checkArgument;
+import static org.apache.flink.util.Preconditions.checkState;
+
+/** Helper class that computes VertexInputInfo for pointwise input. */
+public class PointwiseVertexInputInfoComputer {
+
+    private static final Logger LOG =
+            LoggerFactory.getLogger(PointwiseVertexInputInfoComputer.class);
+
+    private final long dataVolumePerTask;
+
+    public PointwiseVertexInputInfoComputer(long dataVolumePerTask) {
+        this.dataVolumePerTask = dataVolumePerTask;
+    }
+
+    /**
+     * Computes the input information for a job vertex based on the provided 
blocking input
+     * information and parallelism.
+     *
+     * @param inputInfos List of blocking input information for the job vertex.
+     * @param parallelism Parallelism of the job vertex.
+     * @return A map of intermediate data set IDs to their corresponding job 
vertex input
+     *     information.
+     */
+    public Map<IntermediateDataSetID, JobVertexInputInfo> compute(
+            List<BlockingInputInfo> inputInfos, int parallelism) {
+        checkArgument(
+                
inputInfos.stream().noneMatch(BlockingInputInfo::areInterInputsKeysCorrelated));
+        Map<IntermediateDataSetID, JobVertexInputInfo> vertexInputInfos = new 
HashMap<>();
+        for (BlockingInputInfo inputInfo : inputInfos) {
+            vertexInputInfos.put(
+                    inputInfo.getResultId(),
+                    computeVertexInputInfo(inputInfo, parallelism, 
dataVolumePerTask));
+        }
+        return vertexInputInfos;
+    }
+
+    /**
+     * Decide parallelism and input infos, which will make the data be evenly 
distributed to
+     * downstream subtasks for POINTWISE, such that different downstream 
subtasks consume roughly
+     * the same amount of data.
+     *
+     * <p>Assume that `inputInfo` has two partitions, each partition has three 
subpartitions, their
+     * data bytes are: {0->[1,2,1], 1->[2,1,2]}, and the expected parallelism 
is 3. The calculation
+     * process is as follows: <br>
+     * 1. Create subpartition slices for input which is composed of several 
subpartitions. The
+     * created slice list and its data bytes are: [1,2,1,2,1,2] <br>
+     * 2. Distribute the subpartition slices array into n balanced parts 
(described by `IndexRange`,
+     * named SubpartitionSliceRanges) based on data volume: [0,1],[2,3],[4,5] 
<br>
+     * 3. Reorganize the distributed results into a mapping of partition range 
to subpartition
+     * range: {0 -> [0,1]}, {0->[2,2],1->[0,0]}, {1->[1,2]}. <br>
+     * The final result is the `SubpartitionGroup` that each of the three 
parallel tasks need to
+     * subscribe.
+     *
+     * @param inputInfo The information of consumed blocking results
+     * @param parallelism The parallelism of the job vertex
+     * @return the vertex input info
+     */
+    static JobVertexInputInfo computeVertexInputInfo(
+            BlockingInputInfo inputInfo, int parallelism, long 
dataVolumePerTask) {
+        List<SubpartitionSlice> subpartitionSlices = 
createSubpartitionSlices(inputInfo);
+
+        // Node: SubpartitionSliceRanges does not represent the real index of 
the subpartitions, but
+        // the location of that subpartition in all subpartitions, as we 
aggregate all subpartitions
+        // into a one-digit array to calculate.
+        Optional<List<IndexRange>> optionalSubpartitionSliceRanges =
+                tryComputeSubpartitionSliceRange(
+                        parallelism,
+                        parallelism,
+                        subpartitionSlices.size(),
+                        dataVolumePerTask,
+                        Map.of(inputInfo.getInputTypeNumber(), 
subpartitionSlices));
+
+        if (optionalSubpartitionSliceRanges.isEmpty()) {
+            LOG.info(
+                    "Filed to decide parallelism in balanced way for input {}, 
fallback to computePartitionOrSubpartitionRangesEvenlySum",
+                    inputInfo.getResultId());
+            return 
VertexInputInfoComputationUtils.computeVertexInputInfoForPointwise(
+                    inputInfo.getNumPartitions(),
+                    parallelism,
+                    inputInfo::getNumSubpartitions,
+                    true);

Review Comment:
   > What if it is not a dynamic graph?
   
   It is impossible to call the `DefaultVertexParallelismAndInputInfosDecider` 
if it is not a dynamic graph.



-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: issues-unsubscr...@flink.apache.org

For queries about this service, please contact Infrastructure at:
us...@infra.apache.org

Reply via email to