Github user wuchong commented on a diff in the pull request:

    https://github.com/apache/flink/pull/2792#discussion_r87708645
  
    --- Diff: 
flink-libraries/flink-table/src/main/scala/org/apache/flink/api/table/runtime/aggregate/AggregateUtil.scala
 ---
    @@ -61,25 +61,108 @@ object AggregateUtil {
        * }}}
        *
        */
    -  def createOperatorFunctionsForAggregates(
    +    def createOperatorFunctionsForAggregates(
           namedAggregates: Seq[CalcitePair[AggregateCall, String]],
           inputType: RelDataType,
           outputType: RelDataType,
           groupings: Array[Int])
         : (MapFunction[Any, Row], RichGroupReduceFunction[Row, Row]) = {
     
    -    val aggregateFunctionsAndFieldIndexes =
    -      transformToAggregateFunctions(namedAggregates.map(_.getKey), 
inputType, groupings.length)
    -    // store the aggregate fields of each aggregate function, by the same 
order of aggregates.
    -    val aggFieldIndexes = aggregateFunctionsAndFieldIndexes._1
    -    val aggregates = aggregateFunctionsAndFieldIndexes._2
    +       val (aggFieldIndexes, aggregates)  =
    +           transformToAggregateFunctions(namedAggregates.map(_.getKey),
    +             inputType, groupings.length)
     
    -    val mapReturnType: RowTypeInfo =
    -      createAggregateBufferDataType(groupings, aggregates, inputType)
    +        createOperatorFunctionsForAggregates(namedAggregates,
    +          inputType,
    +          outputType,
    +          groupings,
    +          aggregates,aggFieldIndexes)
    +    }
     
    -    val mapFunction = new AggregateMapFunction[Row, Row](
    -        aggregates, aggFieldIndexes, groupings,
    -        
mapReturnType.asInstanceOf[RowTypeInfo]).asInstanceOf[MapFunction[Any, Row]]
    +    def createOperatorFunctionsForAggregates(
    +        namedAggregates: Seq[CalcitePair[AggregateCall, String]],
    +        inputType: RelDataType,
    +        outputType: RelDataType,
    +        groupings: Array[Int],
    +        aggregates:Array[Aggregate[_ <: Any]],
    +        aggFieldIndexes:Array[Int])
    +    : (MapFunction[Any, Row], RichGroupReduceFunction[Row, Row])= {
    +
    +      val mapFunction = createAggregateMapFunction(aggregates,
    +                        aggFieldIndexes, groupings, inputType)
    +
    +      // the mapping relation between field index of intermediate 
aggregate Row and output Row.
    +      val groupingOffsetMapping = getGroupKeysMapping(inputType, 
outputType, groupings)
    +
    +      // the mapping relation between aggregate function index in list and 
its corresponding
    +      // field index in output Row.
    +      val aggOffsetMapping = getAggregateMapping(namedAggregates, 
outputType)
    +
    +      if (groupingOffsetMapping.length != groupings.length ||
    +        aggOffsetMapping.length != namedAggregates.length) {
    +        throw new TableException("Could not find output field in input 
data type " +
    +          "or aggregate functions.")
    +      }
    +
    +      val allPartialAggregate = aggregates.map(_.supportPartial).forall(x 
=> x)
    +
    +      val intermediateRowArity = groupings.length +
    +                        aggregates.map(_.intermediateDataType.length).sum
    +
    +      val reduceGroupFunction =
    +        if (allPartialAggregate) {
    +          new AggregateReduceCombineFunction(
    +            aggregates,
    +            groupingOffsetMapping,
    +            aggOffsetMapping,
    +            intermediateRowArity,
    +            outputType.getFieldCount)
    +        }
    +        else {
    +          new AggregateReduceGroupFunction(
    +            aggregates,
    +            groupingOffsetMapping,
    +            aggOffsetMapping,
    +            intermediateRowArity,
    +            outputType.getFieldCount)
    +        }
    +
    +      (mapFunction, reduceGroupFunction)
    +  }
    +
    +  /**
    +    * Create Flink operator functions for Incremental aggregates.
    +    * It includes 2 implementations of Flink operator functions:
    +    * [[org.apache.flink.api.common.functions.MapFunction]] and
    +    * [[org.apache.flink.api.common.functions.ReduceFunction]]
    +    * The output of [[org.apache.flink.api.common.functions.MapFunction]] 
contains the
    +    * intermediate aggregate values of all aggregate function, it's stored 
in Row by the following
    +    * format:
    +    *
    +    * {{{
    +    *                   avg(x) aggOffsetInRow = 2          count(z) 
aggOffsetInRow = 5
    +    *                             |                          |
    +    *                             v                          v
    +    *        +---------+---------+--------+--------+--------+--------+
    +    *        |groupKey1|groupKey2|  sum1  | count1 |  sum2  | count2 |
    +    *        +---------+---------+--------+--------+--------+--------+
    +    *                                              ^
    +    *                                              |
    +    *                               sum(y) aggOffsetInRow = 4
    +    * }}}
    +    *
    +    */
    --- End diff --
    
    It would be better to describe the meaning of the return value. Especially  
`Array[(Int, Int)],Array[(Int, Int)],Int`.


---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at infrastruct...@apache.org or file a JIRA ticket
with INFRA.
---

Reply via email to