Fan Hong created FLINK-32889: -------------------------------- Summary: BinaryClassificationEvaluator gives wrong weighted AUC value Key: FLINK-32889 URL: https://issues.apache.org/jira/browse/FLINK-32889 Project: Flink Issue Type: Bug Components: Library / Machine Learning Affects Versions: ml-2.3.0 Reporter: Fan Hong
BinaryClassificationEvaluator gives wrong AUC value when a weight column provided. Here is an case from the unit test. The (score, label, weight) of data are: {code:java} (0.9, 1.0, 0.8), (0.9, 1.0, 0.7), (0.9, 1.0, 0.5), (0.75, 0.0, 1.2), (0.6, 0.0, 1.3), (0.9, 1.0, 1.5), (0.9, 1.0, 1.4), (0.4, 0.0, 0.3), (0.3, 0.0, 0.5), (0.9, 1.0, 1.9), (0.2, 0.0, 1.2), (0.1, 1.0, 1.0) {code} PySpark and scikit-learn gives a AUC score of 0.87179, while Flink ML implementation gives 0.891168. -- This message was sent by Atlassian Jira (v8.20.10#820010)