Fan Hong created FLINK-32889:
--------------------------------

             Summary: BinaryClassificationEvaluator gives wrong weighted AUC 
value
                 Key: FLINK-32889
                 URL: https://issues.apache.org/jira/browse/FLINK-32889
             Project: Flink
          Issue Type: Bug
          Components: Library / Machine Learning
    Affects Versions: ml-2.3.0
            Reporter: Fan Hong


BinaryClassificationEvaluator gives wrong AUC value when a weight column 
provided.

Here is an case from the unit test. The (score, label, weight) of data are:
{code:java}
(0.9, 1.0,  0.8),
(0.9, 1.0,  0.7),
(0.9, 1.0,  0.5),
(0.75, 0.0,  1.2),
(0.6, 0.0,  1.3),
(0.9, 1.0,  1.5),
(0.9, 1.0,  1.4),
(0.4, 0.0,  0.3),
(0.3, 0.0,  0.5),
(0.9, 1.0,  1.9),
(0.2, 0.0,  1.2),
(0.1, 1.0,  1.0)
{code}
PySpark and scikit-learn gives a AUC score of 0.87179, while Flink ML 
implementation gives 0.891168.

 



--
This message was sent by Atlassian Jira
(v8.20.10#820010)

Reply via email to