lindong28 commented on code in PR #28:
URL: https://github.com/apache/flink-ml/pull/28#discussion_r1093233927


##########
flink-ml-lib/src/main/java/org/apache/flink/ml/classification/linear/LogisticRegression.java:
##########
@@ -0,0 +1,653 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one
+ * or more contributor license agreements.  See the NOTICE file
+ * distributed with this work for additional information
+ * regarding copyright ownership.  The ASF licenses this file
+ * to you under the Apache License, Version 2.0 (the
+ * "License"); you may not use this file except in compliance
+ * with the License.  You may obtain a copy of the License at
+ *
+ *     http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.flink.ml.classification.linear;
+
+import org.apache.flink.api.common.functions.RichMapFunction;
+import org.apache.flink.api.common.state.ListState;
+import org.apache.flink.api.common.state.ListStateDescriptor;
+import org.apache.flink.api.common.typeinfo.BasicTypeInfo;
+import org.apache.flink.api.common.typeinfo.PrimitiveArrayTypeInfo;
+import org.apache.flink.api.common.typeinfo.TypeInformation;
+import org.apache.flink.api.common.typeutils.base.DoubleComparator;
+import org.apache.flink.api.java.tuple.Tuple2;
+import org.apache.flink.api.java.tuple.Tuple3;
+import org.apache.flink.api.java.typeutils.TupleTypeInfo;
+import org.apache.flink.iteration.DataStreamList;
+import org.apache.flink.iteration.IterationBody;
+import org.apache.flink.iteration.IterationBodyResult;
+import org.apache.flink.iteration.IterationConfig;
+import org.apache.flink.iteration.IterationConfig.OperatorLifeCycle;
+import org.apache.flink.iteration.IterationListener;
+import org.apache.flink.iteration.Iterations;
+import org.apache.flink.iteration.ReplayableDataStreamList;
+import org.apache.flink.iteration.operator.OperatorStateUtils;
+import org.apache.flink.ml.api.Estimator;
+import org.apache.flink.ml.common.broadcast.BroadcastUtils;
+import org.apache.flink.ml.common.datastream.DataStreamUtils;
+import org.apache.flink.ml.common.iteration.TerminateOnMaxIterOrTol;
+import org.apache.flink.ml.linalg.BLAS;
+import org.apache.flink.ml.param.Param;
+import org.apache.flink.ml.util.ParamUtils;
+import org.apache.flink.ml.util.ReadWriteUtils;
+import org.apache.flink.runtime.state.StateInitializationContext;
+import org.apache.flink.runtime.state.StateSnapshotContext;
+import org.apache.flink.streaming.api.datastream.DataStream;
+import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
+import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
+import org.apache.flink.streaming.api.operators.AbstractStreamOperator;
+import org.apache.flink.streaming.api.operators.AbstractUdfStreamOperator;
+import org.apache.flink.streaming.api.operators.BoundedMultiInput;
+import org.apache.flink.streaming.api.operators.BoundedOneInput;
+import org.apache.flink.streaming.api.operators.OneInputStreamOperator;
+import org.apache.flink.streaming.api.operators.TwoInputStreamOperator;
+import org.apache.flink.streaming.runtime.streamrecord.StreamRecord;
+import org.apache.flink.table.api.Table;
+import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
+import org.apache.flink.table.api.internal.TableImpl;
+import org.apache.flink.util.Collector;
+import org.apache.flink.util.OutputTag;
+import org.apache.flink.util.Preconditions;
+
+import org.apache.commons.collections.IteratorUtils;
+
+import java.io.IOException;
+import java.util.ArrayList;
+import java.util.Arrays;
+import java.util.Collections;
+import java.util.HashMap;
+import java.util.List;
+import java.util.Map;
+import java.util.Random;
+
+/**
+ * This class implements methods to train a logistic regression model. For 
details, see
+ * https://en.wikipedia.org/wiki/Logistic_regression.
+ */
+public class LogisticRegression
+        implements Estimator<LogisticRegression, LogisticRegressionModel>,
+                LogisticRegressionParams<LogisticRegression> {
+
+    private Map<Param<?>, Object> paramMap = new HashMap<>();
+
+    private static final OutputTag<Tuple2<double[], double[]>> MODEL_OUTPUT =
+            new OutputTag<Tuple2<double[], double[]>>("MODEL_OUTPUT") {};
+
+    public LogisticRegression() {
+        ParamUtils.initializeMapWithDefaultValues(this.paramMap, this);
+    }
+
+    @Override
+    public Map<Param<?>, Object> getParamMap() {
+        return paramMap;
+    }
+
+    @Override
+    public void save(String path) throws IOException {
+        ReadWriteUtils.saveMetadata(this, path);
+    }
+
+    public static LogisticRegression load(StreamExecutionEnvironment env, 
String path)
+            throws IOException {
+        return ReadWriteUtils.loadStageParam(path);
+    }
+
+    @Override
+    @SuppressWarnings("unchecked")
+    public LogisticRegressionModel fit(Table... inputs) {
+        Preconditions.checkArgument(inputs.length == 1);
+        StreamTableEnvironment tEnv =
+                (StreamTableEnvironment) ((TableImpl) 
inputs[0]).getTableEnvironment();
+
+        DataStream<Tuple3<Double, Double, double[]>> trainData =
+                tEnv.toDataStream(inputs[0])
+                        .map(
+                                dataPoint ->
+                                        Tuple3.of(
+                                                getWeightCol() == null
+                                                        ? new Double(1.0)
+                                                        : (Double)
+                                                                
dataPoint.getField(getWeightCol()),
+                                                (Double) 
dataPoint.getField(getLabelCol()),
+                                                (double[]) 
dataPoint.getField(getFeaturesCol())))
+                        .returns(
+                                new TupleTypeInfo<>(
+                                        BasicTypeInfo.DOUBLE_TYPE_INFO,
+                                        BasicTypeInfo.DOUBLE_TYPE_INFO,
+                                        
PrimitiveArrayTypeInfo.DOUBLE_PRIMITIVE_ARRAY_TYPE_INFO));
+
+        DataStream<Double> distinctLabelValues =
+                DataStreamUtils.sortPartition(
+                        DataStreamUtils.distinct(trainData.map(dataPoint -> 
dataPoint.f1)),
+                        new DoubleComparator(true));
+        final String broadcastLabelsName = "broadcastLabels";
+        trainData =
+                BroadcastUtils.withBroadcastStream(
+                        Collections.singletonList(trainData),
+                        Collections.singletonMap(broadcastLabelsName, 
distinctLabelValues),
+                        inputList -> {
+                            DataStream data = inputList.get(0);
+                            return data.transform(
+                                    "preProcess",
+                                    new TupleTypeInfo<>(
+                                            BasicTypeInfo.DOUBLE_TYPE_INFO,
+                                            BasicTypeInfo.DOUBLE_TYPE_INFO,
+                                            PrimitiveArrayTypeInfo
+                                                    
.DOUBLE_PRIMITIVE_ARRAY_TYPE_INFO),
+                                    new PreprocessDataOp(
+                                            new 
PreprocessOneRecord(broadcastLabelsName)));
+                        });
+
+        DataStream<double[]> initModel =
+                trainData
+                        .transform(
+                                "genInitModel",
+                                
PrimitiveArrayTypeInfo.DOUBLE_PRIMITIVE_ARRAY_TYPE_INFO,
+                                new GenInitModel())
+                        
.returns(PrimitiveArrayTypeInfo.DOUBLE_PRIMITIVE_ARRAY_TYPE_INFO);
+
+        DataStream<Tuple2<double[], double[]>> modelAndLoss = train(trainData, 
initModel);
+
+        DataStream<LogisticRegressionModelData> modelData =
+                modelAndLoss
+                        .connect(distinctLabelValues)
+                        .transform(
+                                "composeModelData",
+                                
TypeInformation.of(LogisticRegressionModelData.class),
+                                new ComposeModelDataOp())
+                        .setParallelism(1);
+
+        LogisticRegressionModel model =
+                new 
LogisticRegressionModel().setModelData(tEnv.fromDataStream(modelData));
+        ReadWriteUtils.updateExistingParams(model, paramMap);
+        return model;
+    }
+
+    /** Pre-processes the training data. */
+    private static class PreprocessDataOp
+            extends AbstractUdfStreamOperator<
+                    Tuple3<Double, Double, double[]>,
+                    RichMapFunction<
+                            Tuple3<Double, Double, double[]>, Tuple3<Double, 
Double, double[]>>>
+            implements OneInputStreamOperator<
+                    Tuple3<Double, Double, double[]>, Tuple3<Double, Double, 
double[]>> {
+        public PreprocessDataOp(
+                RichMapFunction<Tuple3<Double, Double, double[]>, 
Tuple3<Double, Double, double[]>>
+                        userFunction) {
+            super(userFunction);
+        }
+
+        @Override
+        public void processElement(StreamRecord<Tuple3<Double, Double, 
double[]>> streamRecord)
+                throws Exception {
+            streamRecord.replace(userFunction.map(streamRecord.getValue()));
+            output.collect(streamRecord);
+        }
+    }
+
+    /** Pre-processes one training sample. */
+    private static class PreprocessOneRecord
+            extends RichMapFunction<
+                    Tuple3<Double, Double, double[]>, Tuple3<Double, Double, 
double[]>> {
+
+        String broadcastLabelsName;
+
+        double[] distinctLabelValues;
+
+        public PreprocessOneRecord(String broadcastLabelsName) {
+            this.broadcastLabelsName = broadcastLabelsName;
+        }
+
+        @Override
+        public Tuple3<Double, Double, double[]> map(Tuple3<Double, Double, 
double[]> value) {
+            if (distinctLabelValues == null) {
+                List<Double> labelList =
+                        
getRuntimeContext().getBroadcastVariable(broadcastLabelsName);
+                distinctLabelValues = 
labelList.stream().mapToDouble(Double::doubleValue).toArray();
+            }
+            // label mapping
+            value.f1 = Math.abs(value.f1 - distinctLabelValues[0]) < 1e-7 ? 1. 
: -1.;

Review Comment:
   Hi @Mrmachiner, I believe we will start to support multiple labels for LR as 
well as other training algorithms in the 2nd half of 2023, but we don't have 
concrete time or plan yet.
   
   Our focus in the past few months has been on developing feature engineering 
algorithms in Flink ML, as that seems to be an easier way to help Flink ML get 
users in production.



-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: issues-unsubscr...@flink.apache.org

For queries about this service, please contact Infrastructure at:
us...@infra.apache.org

Reply via email to