[ https://issues.apache.org/jira/browse/FLINK-28742?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Xingbo Huang reassigned FLINK-28742: ------------------------------------ Assignee: Xingbo Huang > Table.to_pandas fails with lit("xxx") > ------------------------------------- > > Key: FLINK-28742 > URL: https://issues.apache.org/jira/browse/FLINK-28742 > Project: Flink > Issue Type: Bug > Components: API / Python > Affects Versions: 1.15.1 > Reporter: Xuannan Su > Assignee: Xingbo Huang > Priority: Major > > Table.to_pandas method throws the following exception when the table contains > lit("anyString"). > > {code:none} > py4j.protocol.Py4JJavaError: An error occurred while calling > z:org.apache.flink.table.runtime.arrow.ArrowUtils.collectAsPandasDataFrame. > : java.lang.UnsupportedOperationException: Python vectorized UDF doesn't > support logical type CHAR(3) NOT NULL currently. > at > org.apache.flink.table.runtime.arrow.ArrowUtils$LogicalTypeToArrowTypeConverter.defaultMethod(ArrowUtils.java:743) > at > org.apache.flink.table.runtime.arrow.ArrowUtils$LogicalTypeToArrowTypeConverter.defaultMethod(ArrowUtils.java:617) > at > org.apache.flink.table.types.logical.utils.LogicalTypeDefaultVisitor.visit(LogicalTypeDefaultVisitor.java:62) > at org.apache.flink.table.types.logical.CharType.accept(CharType.java:148) > at > org.apache.flink.table.runtime.arrow.ArrowUtils.toArrowField(ArrowUtils.java:189) > at > org.apache.flink.table.runtime.arrow.ArrowUtils.lambda$toArrowSchema$0(ArrowUtils.java:180) > at > java.util.stream.ReferencePipeline$3$1.accept(ReferencePipeline.java:193) > at > java.util.ArrayList$ArrayListSpliterator.forEachRemaining(ArrayList.java:1384) > at java.util.stream.AbstractPipeline.copyInto(AbstractPipeline.java:482) > at > java.util.stream.AbstractPipeline.wrapAndCopyInto(AbstractPipeline.java:472) > at > java.util.stream.ReduceOps$ReduceOp.evaluateSequential(ReduceOps.java:708) > at java.util.stream.AbstractPipeline.evaluate(AbstractPipeline.java:234) > at java.util.stream.ReferencePipeline.collect(ReferencePipeline.java:566) > at > org.apache.flink.table.runtime.arrow.ArrowUtils.toArrowSchema(ArrowUtils.java:181) > at > org.apache.flink.table.runtime.arrow.ArrowUtils.collectAsPandasDataFrame(ArrowUtils.java:483) > at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) > at > sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) > at > sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) > at java.lang.reflect.Method.invoke(Method.java:498) > at > org.apache.flink.api.python.shaded.py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244) > at > org.apache.flink.api.python.shaded.py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357) > at > org.apache.flink.api.python.shaded.py4j.Gateway.invoke(Gateway.java:282) > at > org.apache.flink.api.python.shaded.py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132) > at > org.apache.flink.api.python.shaded.py4j.commands.CallCommand.execute(CallCommand.java:79) > at > org.apache.flink.api.python.shaded.py4j.GatewayConnection.run(GatewayConnection.java:238) > at java.lang.Thread.run(Thread.java:748) > {code} > > The code to reproduce the problem > {code:python} > env = StreamExecutionEnvironment.get_execution_environment() > t_env = StreamTableEnvironment.create(env) > src_table = t_env.from_data_stream( > env.from_collection([1, 2], type_info=BasicTypeInfo.INT_TYPE_INFO()) > ) > table = src_table.select(expr.lit("123")) > # table.execute().print() > print(table.to_pandas()){code} -- This message was sent by Atlassian Jira (v8.20.10#820010)