MartijnVisser commented on a change in pull request #18165:
URL: https://github.com/apache/flink/pull/18165#discussion_r775965371



##########
File path: docs/content/docs/connectors/datastream/kinesis.md
##########
@@ -566,124 +583,124 @@ Retry and backoff parameters can be configured using 
the `ConsumerConfigConstant
 this is called once per stream during stream consumer deregistration, unless 
the `NONE` or `EAGER` registration strategy is configured.
 Retry and backoff parameters can be configured using the 
`ConsumerConfigConstants.DEREGISTER_STREAM_*` keys.  
 
-## Kinesis Producer
-
-The `FlinkKinesisProducer` uses [Kinesis Producer Library 
(KPL)](http://docs.aws.amazon.com/streams/latest/dev/developing-producers-with-kpl.html)
 to put data from a Flink stream into a Kinesis stream.
-
-Note that the producer is not participating in Flink's checkpointing and 
doesn't provide exactly-once processing guarantees. Also, the Kinesis producer 
does not guarantee that records are written in order to the shards (See 
[here](https://github.com/awslabs/amazon-kinesis-producer/issues/23) and 
[here](http://docs.aws.amazon.com/kinesis/latest/APIReference/API_PutRecord.html#API_PutRecord_RequestSyntax)
 for more details).
+## Kinesis Data Streams Sink
 
-In case of a failure or a resharding, data will be written again to Kinesis, 
leading to duplicates. This behavior is usually called "at-least-once" 
semantics.
+The Kinesis Data Streams sink uses the [AWS v2 SDK for 
Java](https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/home.html)
 to put data from a Flink stream into a Kinesis stream.
 
-To put data into a Kinesis stream, make sure the stream is marked as "ACTIVE" 
in the AWS dashboard.
+To put data into a Kinesis stream, make sure the stream is marked as “ACTIVE” 
in the AWS dashboard.
 
 For the monitoring to work, the user accessing the stream needs access to the 
CloudWatch service.
 
 {{< tabs "6df3b696-c2ca-4f44-bea0-96cf8275d61c" >}}
 {{< tab "Java" >}}
 ```java
-Properties producerConfig = new Properties();
-// Required configs
-producerConfig.put(AWSConfigConstants.AWS_REGION, "us-east-1");
-producerConfig.put(AWSConfigConstants.AWS_ACCESS_KEY_ID, "aws_access_key_id");
-producerConfig.put(AWSConfigConstants.AWS_SECRET_ACCESS_KEY, 
"aws_secret_access_key");
-// Optional configs
-producerConfig.put("AggregationMaxCount", "4294967295");
-producerConfig.put("CollectionMaxCount", "1000");
-producerConfig.put("RecordTtl", "30000");
-producerConfig.put("RequestTimeout", "6000");
-producerConfig.put("ThreadPoolSize", "15");
-
-// Disable Aggregation if it's not supported by a consumer
-// producerConfig.put("AggregationEnabled", "false");
-// Switch KinesisProducer's threading model
-// producerConfig.put("ThreadingModel", "PER_REQUEST");
-
-FlinkKinesisProducer<String> kinesis = new FlinkKinesisProducer<>(new 
SimpleStringSchema(), producerConfig);
-kinesis.setFailOnError(true);
-kinesis.setDefaultStream("kinesis_stream_name");
-kinesis.setDefaultPartition("0");
+ElementConverter<String, PutRecordsRequestEntry> elementConverter =
+    KinesisDataStreamsSinkElementConverter.<String>builder()
+        .setSerializationSchema(new SimpleStringSchema())
+        .setPartitionKeyGenerator(element -> 
String.valueOf(element.hashCode()))
+        .build();
+
+Properties sinkProperties = new Properties();
+// Required
+sinkProperties.put(AWSConfigConstants.AWS_REGION, "us-east-1");
+sinkProperties.put(AWSConfigConstants.AWS_ACCESS_KEY_ID, "aws_access_key_id");
+sinkProperties.put(AWSConfigConstants.AWS_SECRET_ACCESS_KEY, 
"aws_secret_access_key");
+
+KinesisDataStreamsSink<String> kdsSink =
+    KinesisDataStreamsSink.<String>builder()
+        .setKinesisClientProperties(sinkProperties)    // Required
+        .setElementConverter(elementConverter)         // Required
+        .setStreamName("your-stream-name")             // Required
+        .setFailOnError(false)                         // Optional
+        .setMaxBatchSize(500)                          // Optional
+        .setMaxInFlightRequests(16)                    // Optional
+        .setMaxBufferedRequests(10_000)                // Optional
+        .setMaxBatchSizeInBytes(5 * 1024 * 1024)       // Optional
+        .setMaxTimeInBufferMS(5000)                    // Optional
+        .setMaxRecordSizeInBytes(1 * 1024 * 1024)      // Optional
+        .build();
 
 DataStream<String> simpleStringStream = ...;
-simpleStringStream.addSink(kinesis);
+simpleStringStream.sinkTo(kdsSink);
 ```
 {{< /tab >}}
 {{< tab "Scala" >}}
 ```scala
-val producerConfig = new Properties()
-// Required configs
-producerConfig.put(AWSConfigConstants.AWS_REGION, "us-east-1")
-producerConfig.put(AWSConfigConstants.AWS_ACCESS_KEY_ID, "aws_access_key_id")
-producerConfig.put(AWSConfigConstants.AWS_SECRET_ACCESS_KEY, 
"aws_secret_access_key")
-// Optional KPL configs
-producerConfig.put("AggregationMaxCount", "4294967295")
-producerConfig.put("CollectionMaxCount", "1000")
-producerConfig.put("RecordTtl", "30000")
-producerConfig.put("RequestTimeout", "6000")
-producerConfig.put("ThreadPoolSize", "15")
-
-// Disable Aggregation if it's not supported by a consumer
-// producerConfig.put("AggregationEnabled", "false")
-// Switch KinesisProducer's threading model
-// producerConfig.put("ThreadingModel", "PER_REQUEST")
-
-val kinesis = new FlinkKinesisProducer[String](new SimpleStringSchema, 
producerConfig)
-kinesis.setFailOnError(true)
-kinesis.setDefaultStream("kinesis_stream_name")
-kinesis.setDefaultPartition("0")
+val elementConverter =
+    KinesisDataStreamsSinkElementConverter.<String>builder()
+        .setSerializationSchema(new SimpleStringSchema())
+        .setPartitionKeyGenerator(element -> 
String.valueOf(element.hashCode()))
+        .build()
+
+val sinkProperties = new Properties()
+// Required
+sinkProperties.put(AWSConfigConstants.AWS_REGION, "us-east-1")
+sinkProperties.put(AWSConfigConstants.AWS_ACCESS_KEY_ID, "aws_access_key_id")
+sinkProperties.put(AWSConfigConstants.AWS_SECRET_ACCESS_KEY, 
"aws_secret_access_key")
+
+val kdsSink = KinesisDataStreamsSink.<String>builder()
+    .setKinesisClientProperties(sinkProperties)  // Required
+    .setElementConverter(elementConverter)       // Required
+    .setStreamName("your-stream-name")           // Required
+    .setFailOnError(false)                       // Optional
+    .setMaxBatchSize(500)                        // Optional
+    .setMaxInFlightRequests(16)                  // Optional
+    .setMaxBufferedRequests(10000)               // Optional
+    .setMaxBatchSizeInBytes(5 * 1024 * 1024)     // Optional
+    .setMaxTimeInBufferMS(5000)                  // Optional
+    .setMaxRecordSizeInBytes(1 * 1024 * 1024)    // Optional
+    .build()
 
 val simpleStringStream = ...
-simpleStringStream.addSink(kinesis)
+simpleStringStream.sinkTo(kdsSink)
 ```
 {{< /tab >}}
 {{< /tabs >}}
 
-The above is a simple example of using the producer. To initialize 
`FlinkKinesisProducer`, users are required to pass in `AWS_REGION`, 
`AWS_ACCESS_KEY_ID`, and `AWS_SECRET_ACCESS_KEY` via a `java.util.Properties` 
instance. Users can also pass in KPL's configurations as optional parameters to 
customize the KPL underlying `FlinkKinesisProducer`. The full list of KPL 
configs and explanations can be found 
[here](https://github.com/awslabs/amazon-kinesis-producer/blob/master/java/amazon-kinesis-producer-sample/default_config.properties).
 The example demonstrates producing a single Kinesis stream in the AWS region 
"us-east-1".
+The above is a simple example of using the Kinesis Data Streams sink. Begin by 
creating a `java.util.Properties` instance with the `AWS_REGION`, 
`AWS_ACCESS_KEY_ID`, and `AWS_SECRET_ACCESS_KEY` configured. You can then 
construct the sink with the builder. The default values for the optional 
configurations are shown above.
 
-If users don't specify any KPL configs and values, `FlinkKinesisProducer` will 
use default config values of KPL, except `RateLimit`. `RateLimit` limits the 
maximum allowed put rate for a shard, as a percentage of the backend limits. 
KPL's default value is 150 but it makes KPL throw `RateLimitExceededException` 
too frequently and breaks Flink sink as a result. Thus `FlinkKinesisProducer` 
overrides KPL's default value to 100.
+You will always need to supply a `KinesisDataStreamsSinkElementConverter` 
during sink creation. This is where you specify your serialization schema and 
logic for generating a [partition 
key](https://docs.aws.amazon.com/streams/latest/dev/key-concepts.html#partition-key)
 from a record.
 
-Instead of a `SerializationSchema`, it also supports a 
`KinesisSerializationSchema`. The `KinesisSerializationSchema` allows to send 
the data to multiple streams. This is
-done using the `KinesisSerializationSchema.getTargetStream(T element)` method. 
Returning `null` there will instruct the producer to write the element to the 
default stream.
-Otherwise, the returned stream name is used.
+Some or all of the records in a request may fail to be persisted by Kinesis 
Data Streams for a number of reasons. If `failOnError` is on, then a runtime 
exception will be raised. Otherwise those records will be requeued in the 
buffer for retry.
 
-### Threading Model
+The KDS Sink provides some metrics through Flink's [metrics system]({{< ref 
"docs/ops/metrics" >}}) to analyze the behavior of the connector. A list of all 
exposed metrics may be found [here]({{<ref "docs/ops/metrics#kinesis-sink">}}).
 
-Since Flink 1.4.0, `FlinkKinesisProducer` switches its default underlying KPL 
from a one-thread-per-request mode to a thread-pool mode. KPL in thread-pool 
mode uses a queue and thread pool to execute requests to Kinesis. This limits 
the number of threads that KPL's native process may create, and therefore 
greatly lowers CPU utilization and improves efficiency. **Thus, We highly 
recommend Flink users use thread-pool model.** The default thread pool size is 
`10`. Users can set the pool size in `java.util.Properties` instance with key 
`ThreadPoolSize`, as shown in the above example.
+### KDS Sinks and Fault Tolerance
 
-Users can still switch back to one-thread-per-request mode by setting a 
key-value pair of `ThreadingModel` and `PER_REQUEST` in `java.util.Properties`, 
as shown in the code commented out in above example.
+The sink is designed to participate in Flink's checkpointing to provide 
at-least-once processing guarantees. It does this by flushing the entire 
contents of the buffer when a checkpoint reaches the sink. This effectively 
assures all requests that were triggered before the checkpoint have been 
successfully acknowledged by Kinesis Data Streams, before proceeding to process 
more records sent to the sink.
 
-### Backpressure
+In case of a failure or a resharding, data will be written again to Kinesis, 
leading to duplicates.  Also, the sink does not guarantee that records are 
written in order to the shards.
 
-By default, `FlinkKinesisProducer` does not backpressure. Instead, records that
-cannot be sent because of the rate restriction of 1 MB per second per shard are
-buffered in an unbounded queue and dropped when their `RecordTtl` expires.
+To use fault tolerant KDS Sinks, checkpointing of the topology needs to be 
enabled at the execution environment.
 
-To avoid data loss, you can enable backpressuring by restricting the size of 
the
-internal queue:
+### Backpressure
 
+Backpressure in the sink arises as the sink buffer fills up and writes to the 
sink 
+begins to exhibit blocking behaviour. Kinesis Data Streams has a rate 
restriction of 
+1 MB per second per shard.
+
+You can ease backpressuring by adjusting the size of the internal queue:
 ```
-// 200 Bytes per record, 1 shard
-kinesis.setQueueLimit(500);
+KinesisDataStreamsSink<String> kdsSink =
+    KinesisDataStreamsSink.<String>builder()
+        ...
+        .setMaxBufferedRequests(10_000)
+        ...
 ```
 
-The value for `queueLimit` depends on the expected record size. To choose a 
good
-value, consider that Kinesis is rate-limited to 1MB per second per shard. If
-less than one second's worth of records is buffered, then the queue may not be
-able to operate at full capacity. With the default `RecordMaxBufferedTime` of
-100ms, a queue size of 100kB per shard should be sufficient. The `queueLimit`
-can then be computed via
+The sink default maximum record size is 1MB and maximum batch size is 5MB in 
line with the Kinesis Data Streams maximums.
 
-```
-queue limit = (number of shards * queue size per shard) / record size
-```
+## Kinesis Producer
 
-E.g. for 200Bytes per record and 8 shards, a queue limit of 4000 is a good
-starting point. If the queue size limits throughput (below 1MB per second per
-shard), try increasing the queue limit slightly.
+{{< hint warning >}}
+`flink-connector-kinesis` is deprecated and may be removed with a future 
release of Flink, please use [Kinesis Data Streams Sink]({{<ref 
"docs/connectors/datastream/kinesis#kinesis-data-streams-sink">}}) instead.

Review comment:
       I think we should definitely mark is as deprecated in Flink 1.15, so it 
can safely be removed in Flink 1.16+




-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: issues-unsubscr...@flink.apache.org

For queries about this service, please contact Infrastructure at:
us...@infra.apache.org


Reply via email to