wuchong commented on a change in pull request #16852:
URL: https://github.com/apache/flink/pull/16852#discussion_r698426348



##########
File path: docs/content.zh/docs/dev/datastream/overview.md
##########
@@ -209,46 +159,30 @@ print()
 {{< /tab >}}
 {{< /tabs >}}
 
-Once you specified the complete program you need to **trigger the program
-execution** by calling `execute()` on the `StreamExecutionEnvironment`.
-Depending on the type of the `ExecutionEnvironment` the execution will be
-triggered on your local machine or submit your program for execution on a
-cluster.
+一旦指定了完整的程序,需要调用 `StreamExecutionEnvironment` 的 `execute()` 方法来**触发程序执行**。根据 
`ExecutionEnvironment` 的类型,执行会在你的本地机器上触发,或将你的程序提交到某个集群上执行。
 
-The `execute()` method will wait for the job to finish and then return a
-`JobExecutionResult`, this contains execution times and accumulator results.
+`execute()` 方法将等待作业完成,然后返回一个 `JobExecutionResult` ,其中包含执行时间和累加器结果。
 
-If you don't want to wait for the job to finish, you can trigger asynchronous
-job execution by calling `executeAsync()` on the `StreamExecutionEnvironment`.
-It will return a `JobClient` with which you can communicate with the job you
-just submitted. For instance, here is how to implement the semantics of
-`execute()` by using `executeAsync()`.
+如果不想等待作业完成,可以通过调用 `StreamExecutionEnvironment` 的 `executeAsync()` 
方法来触发作业异步执行。它会返回一个 `JobClient` ,你可以通过它与刚刚提交的作业进行通信。如下是使用 `executeAsync()` 实现 
`execute()` 语义的示例。
 
 ```java
 final JobClient jobClient = env.executeAsync();
 
 final JobExecutionResult jobExecutionResult = 
jobClient.getJobExecutionResult().get();
 ```
 
-That last part about program execution is crucial to understanding when and how
-Flink operations are executed. All Flink programs are executed lazily: When the
-program's main method is executed, the data loading and transformations do not
-happen directly. Rather, each operation is created and added to a dataflow
-graph. The operations are actually executed when the execution is explicitly
-triggered by an `execute()` call on the execution environment.  Whether the
-program is executed locally or on a cluster depends on the type of execution
-environment
+关于程序执行的最后一部分对于理解何时以及如何执行 Flink 算子是至关重要的。所有 Flink 程序都是惰性执行的:当程序的 main 
方法被执行时,数据加载和转换不会直接发生。相反,每个算子都被创建并添加到 dataflow 形成的有向图。当执行被执行环境的 `execute()` 
方法显示地触发时,这些算子才会真正执行。程序是在本地执行还是在集群上执行取决于执行环境的类型。
 
-The lazy evaluation lets you construct sophisticated programs that Flink
-executes as one holistically planned unit.
+惰性计算让你构建复杂的程序,Flink 将其作为一个整体规划的单元来执行。

Review comment:
       延迟计算 也 ok。 
咱术语表中有建议这个翻译:https://cwiki.apache.org/confluence/display/FLINK/Flink+Translation+Specifications




-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: issues-unsubscr...@flink.apache.org

For queries about this service, please contact Infrastructure at:
us...@infra.apache.org


Reply via email to