dianfu commented on a change in pull request #16061:
URL: https://github.com/apache/flink/pull/16061#discussion_r646249784



##########
File path: docs/content.zh/docs/dev/python/overview.md
##########
@@ -29,36 +29,33 @@ under the License.
 
 {{< img src="/fig/pyflink.svg" alt="PyFlink" class="offset" width="50%" >}}
 
-PyFlink is a Python API for Apache Flink that allows you to build scalable 
batch and streaming 
-workloads, such as real-time data processing pipelines, large-scale 
exploratory data analysis,
-Machine Learning (ML) pipelines and ETL processes.
-If you're already familiar with Python and libraries such as Pandas, then 
PyFlink makes it simpler
-to leverage the full capabilities of the Flink ecosystem. Depending on the 
level of abstraction you
-need, there are two different APIs that can be used in PyFlink:
+PyFlink 是 Apache Flink 的 Python 
API,你可以使用它构建可扩展的批处理和流工作负载,例如实时数据处理管道、大规模探索性数据分析、机器学习(ML)管道和 ETL 处理。

Review comment:
       ```suggestion
   PyFlink 是 Apache Flink 的 Python 
API,你可以使用它构建可扩展的批处理和流处理任务,例如实时数据处理管道、大规模探索性数据分析、机器学习(ML)管道和 ETL 处理。
   ```

##########
File path: docs/content.zh/docs/dev/python/overview.md
##########
@@ -29,36 +29,33 @@ under the License.
 
 {{< img src="/fig/pyflink.svg" alt="PyFlink" class="offset" width="50%" >}}
 
-PyFlink is a Python API for Apache Flink that allows you to build scalable 
batch and streaming 
-workloads, such as real-time data processing pipelines, large-scale 
exploratory data analysis,
-Machine Learning (ML) pipelines and ETL processes.
-If you're already familiar with Python and libraries such as Pandas, then 
PyFlink makes it simpler
-to leverage the full capabilities of the Flink ecosystem. Depending on the 
level of abstraction you
-need, there are two different APIs that can be used in PyFlink:
+PyFlink 是 Apache Flink 的 Python 
API,你可以使用它构建可扩展的批处理和流工作负载,例如实时数据处理管道、大规模探索性数据分析、机器学习(ML)管道和 ETL 处理。
+如果你已经熟悉 Python 和 Pandas 等库,那么 PyFlink 可以让你更轻松地利用 Flink 生态系统的全部功能。
+根据你需要的抽象级别,有两种不同的 API 可以在 PyFlink 中使用:
 
-* The **PyFlink Table API** allows you to write powerful relational queries in 
a way that is similar to using SQL or working with tabular data in Python.
-* At the same time, the **PyFlink DataStream API** gives you lower-level 
control over the core building blocks of Flink, [state]({{< ref 
"docs/concepts/stateful-stream-processing" >}}) and [time]({{< ref 
"docs/concepts/time" >}}), to build more complex stream processing use cases.
+* **PyFlink Table API** 允许使用类似于 SQL 或在 Python 中处理表格数据的方式编写强大的关系查询。
+* 与此同时,**PyFlink DataStream API** 提供对 Flink 的核心构建块 [state]({{< ref 
"docs/concepts/stateful-stream-processing" >}}) 和 [time]({{< ref 
"docs/concepts/time" >}}) 进行较低级别(粒度)的控制,以便构建更复杂的流处理用例。
 
 {{< columns >}}
 
-### Try PyFlink
+### 尝试 PyFlink
 
-If you’re interested in playing around with Flink, try one of our tutorials:
+如果你有兴趣使用 PyFlink,可以尝试以下任意教程:
 
-* [Intro to PyFlink DataStream API]({{< ref 
"docs/dev/python/datastream_tutorial" >}})
-* [Intro to PyFlink Table API]({{< ref "docs/dev/python/table_api_tutorial" 
>}})
+* [PyFlink DataStream API 介绍]({{< ref "docs/dev/python/datastream_tutorial" 
>}})
+* [PyFlink Table API 介绍]({{< ref "docs/dev/python/table_api_tutorial" >}})
 
 <--->
 
-### Explore PyFlink
+### 探究 PyFlink

Review comment:
       ```suggestion
   ### 深入 PyFlink
   ```

##########
File path: docs/content.zh/docs/dev/python/overview.md
##########
@@ -29,36 +29,33 @@ under the License.
 
 {{< img src="/fig/pyflink.svg" alt="PyFlink" class="offset" width="50%" >}}
 
-PyFlink is a Python API for Apache Flink that allows you to build scalable 
batch and streaming 
-workloads, such as real-time data processing pipelines, large-scale 
exploratory data analysis,
-Machine Learning (ML) pipelines and ETL processes.
-If you're already familiar with Python and libraries such as Pandas, then 
PyFlink makes it simpler
-to leverage the full capabilities of the Flink ecosystem. Depending on the 
level of abstraction you
-need, there are two different APIs that can be used in PyFlink:
+PyFlink 是 Apache Flink 的 Python 
API,你可以使用它构建可扩展的批处理和流工作负载,例如实时数据处理管道、大规模探索性数据分析、机器学习(ML)管道和 ETL 处理。
+如果你已经熟悉 Python 和 Pandas 等库,那么 PyFlink 可以让你更轻松地利用 Flink 生态系统的全部功能。
+根据你需要的抽象级别,有两种不同的 API 可以在 PyFlink 中使用:
 
-* The **PyFlink Table API** allows you to write powerful relational queries in 
a way that is similar to using SQL or working with tabular data in Python.
-* At the same time, the **PyFlink DataStream API** gives you lower-level 
control over the core building blocks of Flink, [state]({{< ref 
"docs/concepts/stateful-stream-processing" >}}) and [time]({{< ref 
"docs/concepts/time" >}}), to build more complex stream processing use cases.
+* **PyFlink Table API** 允许使用类似于 SQL 或在 Python 中处理表格数据的方式编写强大的关系查询。

Review comment:
       ```suggestion
   * **PyFlink Table API** 允许你使用类似于 SQL 或在 Python 中处理表格数据的方式编写强大的关系查询。
   ```

##########
File path: docs/content.zh/docs/dev/python/overview.md
##########
@@ -29,36 +29,33 @@ under the License.
 
 {{< img src="/fig/pyflink.svg" alt="PyFlink" class="offset" width="50%" >}}
 
-PyFlink is a Python API for Apache Flink that allows you to build scalable 
batch and streaming 
-workloads, such as real-time data processing pipelines, large-scale 
exploratory data analysis,
-Machine Learning (ML) pipelines and ETL processes.
-If you're already familiar with Python and libraries such as Pandas, then 
PyFlink makes it simpler
-to leverage the full capabilities of the Flink ecosystem. Depending on the 
level of abstraction you
-need, there are two different APIs that can be used in PyFlink:
+PyFlink 是 Apache Flink 的 Python 
API,你可以使用它构建可扩展的批处理和流工作负载,例如实时数据处理管道、大规模探索性数据分析、机器学习(ML)管道和 ETL 处理。
+如果你已经熟悉 Python 和 Pandas 等库,那么 PyFlink 可以让你更轻松地利用 Flink 生态系统的全部功能。
+根据你需要的抽象级别,有两种不同的 API 可以在 PyFlink 中使用:

Review comment:
       ```suggestion
   根据你需要的抽象级别的不同,有两种不同的 API 可以在 PyFlink 中使用:
   ```

##########
File path: docs/content.zh/docs/dev/python/overview.md
##########
@@ -29,36 +29,33 @@ under the License.
 

Review comment:
       title: Overview -> title: 概览

##########
File path: docs/content.zh/docs/dev/python/overview.md
##########
@@ -29,36 +29,33 @@ under the License.
 
 {{< img src="/fig/pyflink.svg" alt="PyFlink" class="offset" width="50%" >}}
 
-PyFlink is a Python API for Apache Flink that allows you to build scalable 
batch and streaming 
-workloads, such as real-time data processing pipelines, large-scale 
exploratory data analysis,
-Machine Learning (ML) pipelines and ETL processes.
-If you're already familiar with Python and libraries such as Pandas, then 
PyFlink makes it simpler
-to leverage the full capabilities of the Flink ecosystem. Depending on the 
level of abstraction you
-need, there are two different APIs that can be used in PyFlink:
+PyFlink 是 Apache Flink 的 Python 
API,你可以使用它构建可扩展的批处理和流工作负载,例如实时数据处理管道、大规模探索性数据分析、机器学习(ML)管道和 ETL 处理。
+如果你已经熟悉 Python 和 Pandas 等库,那么 PyFlink 可以让你更轻松地利用 Flink 生态系统的全部功能。

Review comment:
       ```suggestion
   如果你对 Python 和 Pandas 等库已经比较熟悉,那么 PyFlink 可以让你更轻松地利用 Flink 生态系统的全部功能。
   ```

##########
File path: docs/content.zh/docs/dev/python/overview.md
##########
@@ -29,36 +29,33 @@ under the License.
 
 {{< img src="/fig/pyflink.svg" alt="PyFlink" class="offset" width="50%" >}}
 
-PyFlink is a Python API for Apache Flink that allows you to build scalable 
batch and streaming 
-workloads, such as real-time data processing pipelines, large-scale 
exploratory data analysis,
-Machine Learning (ML) pipelines and ETL processes.
-If you're already familiar with Python and libraries such as Pandas, then 
PyFlink makes it simpler
-to leverage the full capabilities of the Flink ecosystem. Depending on the 
level of abstraction you
-need, there are two different APIs that can be used in PyFlink:
+PyFlink 是 Apache Flink 的 Python 
API,你可以使用它构建可扩展的批处理和流工作负载,例如实时数据处理管道、大规模探索性数据分析、机器学习(ML)管道和 ETL 处理。
+如果你已经熟悉 Python 和 Pandas 等库,那么 PyFlink 可以让你更轻松地利用 Flink 生态系统的全部功能。
+根据你需要的抽象级别,有两种不同的 API 可以在 PyFlink 中使用:
 
-* The **PyFlink Table API** allows you to write powerful relational queries in 
a way that is similar to using SQL or working with tabular data in Python.
-* At the same time, the **PyFlink DataStream API** gives you lower-level 
control over the core building blocks of Flink, [state]({{< ref 
"docs/concepts/stateful-stream-processing" >}}) and [time]({{< ref 
"docs/concepts/time" >}}), to build more complex stream processing use cases.
+* **PyFlink Table API** 允许使用类似于 SQL 或在 Python 中处理表格数据的方式编写强大的关系查询。
+* 与此同时,**PyFlink DataStream API** 提供对 Flink 的核心构建块 [state]({{< ref 
"docs/concepts/stateful-stream-processing" >}}) 和 [time]({{< ref 
"docs/concepts/time" >}}) 进行较低级别(粒度)的控制,以便构建更复杂的流处理用例。
 
 {{< columns >}}
 
-### Try PyFlink
+### 尝试 PyFlink
 
-If you’re interested in playing around with Flink, try one of our tutorials:
+如果你有兴趣使用 PyFlink,可以尝试以下任意教程:
 
-* [Intro to PyFlink DataStream API]({{< ref 
"docs/dev/python/datastream_tutorial" >}})
-* [Intro to PyFlink Table API]({{< ref "docs/dev/python/table_api_tutorial" 
>}})
+* [PyFlink DataStream API 介绍]({{< ref "docs/dev/python/datastream_tutorial" 
>}})
+* [PyFlink Table API 介绍]({{< ref "docs/dev/python/table_api_tutorial" >}})
 
 <--->
 
-### Explore PyFlink
+### 探究 PyFlink
 
-The reference documentation covers all the details. Some starting points:
+参考文档涵盖了 PyFlink 所有细节。一些起始链接如下:
 
 * [PyFlink DataStream API]({{< ref "docs/dev/python/table/table_environment" 
>}})
 * [PyFlink Table API &amp; SQL]({{< ref "docs/dev/python/datastream/operators" 
>}})
 
 {{< /columns >}}
 
-### Get Help with PyFlink
+### 获取有关 PyFlink 的帮助
 
-If you get stuck, check out our [community support 
resources](https://flink.apache.org/community.html). In particular, Apache 
Flink’s user mailing list is consistently ranked as one of the most active of 
any Apache project, and is a great way to get help quickly.
+如果你遇到困难,请查看我们的[社区支持资源](https://flink.apache.org/community.html)。特别是 Apache 
Flink 的用户邮件列表,Apache Flink 的用户邮件列表一直被列为所有 Apache 项目中最活跃的项目邮件列表之一,是快速获得帮助的好方法。

Review comment:
       ```suggestion
   如果你遇到困难,请查看我们的[社区支持资源](https://flink.apache.org/community.html),特别是 Apache 
Flink 的用户邮件列表,Apache Flink 的用户邮件列表一直是所有 Apache 项目中最活跃的项目邮件列表之一,是快速获得帮助的好方法。
   ```

##########
File path: docs/content.zh/docs/dev/python/overview.md
##########
@@ -29,36 +29,33 @@ under the License.
 
 {{< img src="/fig/pyflink.svg" alt="PyFlink" class="offset" width="50%" >}}
 
-PyFlink is a Python API for Apache Flink that allows you to build scalable 
batch and streaming 
-workloads, such as real-time data processing pipelines, large-scale 
exploratory data analysis,
-Machine Learning (ML) pipelines and ETL processes.
-If you're already familiar with Python and libraries such as Pandas, then 
PyFlink makes it simpler
-to leverage the full capabilities of the Flink ecosystem. Depending on the 
level of abstraction you
-need, there are two different APIs that can be used in PyFlink:
+PyFlink 是 Apache Flink 的 Python 
API,你可以使用它构建可扩展的批处理和流工作负载,例如实时数据处理管道、大规模探索性数据分析、机器学习(ML)管道和 ETL 处理。
+如果你已经熟悉 Python 和 Pandas 等库,那么 PyFlink 可以让你更轻松地利用 Flink 生态系统的全部功能。
+根据你需要的抽象级别,有两种不同的 API 可以在 PyFlink 中使用:
 
-* The **PyFlink Table API** allows you to write powerful relational queries in 
a way that is similar to using SQL or working with tabular data in Python.
-* At the same time, the **PyFlink DataStream API** gives you lower-level 
control over the core building blocks of Flink, [state]({{< ref 
"docs/concepts/stateful-stream-processing" >}}) and [time]({{< ref 
"docs/concepts/time" >}}), to build more complex stream processing use cases.
+* **PyFlink Table API** 允许使用类似于 SQL 或在 Python 中处理表格数据的方式编写强大的关系查询。
+* 与此同时,**PyFlink DataStream API** 提供对 Flink 的核心构建块 [state]({{< ref 
"docs/concepts/stateful-stream-processing" >}}) 和 [time]({{< ref 
"docs/concepts/time" >}}) 进行较低级别(粒度)的控制,以便构建更复杂的流处理用例。

Review comment:
       ```suggestion
   * 与此同时,**PyFlink DataStream API** 允许你对 Flink 的核心组件 [state]({{< ref 
"docs/concepts/stateful-stream-processing" >}}) 和 [time]({{< ref 
"docs/concepts/time" >}}) 进行细粒度的控制,以便构建更复杂的流处理应用。
   ```

##########
File path: docs/content.zh/docs/dev/python/overview.md
##########
@@ -29,36 +29,33 @@ under the License.
 
 {{< img src="/fig/pyflink.svg" alt="PyFlink" class="offset" width="50%" >}}
 
-PyFlink is a Python API for Apache Flink that allows you to build scalable 
batch and streaming 
-workloads, such as real-time data processing pipelines, large-scale 
exploratory data analysis,
-Machine Learning (ML) pipelines and ETL processes.
-If you're already familiar with Python and libraries such as Pandas, then 
PyFlink makes it simpler
-to leverage the full capabilities of the Flink ecosystem. Depending on the 
level of abstraction you
-need, there are two different APIs that can be used in PyFlink:
+PyFlink 是 Apache Flink 的 Python 
API,你可以使用它构建可扩展的批处理和流工作负载,例如实时数据处理管道、大规模探索性数据分析、机器学习(ML)管道和 ETL 处理。
+如果你已经熟悉 Python 和 Pandas 等库,那么 PyFlink 可以让你更轻松地利用 Flink 生态系统的全部功能。
+根据你需要的抽象级别,有两种不同的 API 可以在 PyFlink 中使用:
 
-* The **PyFlink Table API** allows you to write powerful relational queries in 
a way that is similar to using SQL or working with tabular data in Python.
-* At the same time, the **PyFlink DataStream API** gives you lower-level 
control over the core building blocks of Flink, [state]({{< ref 
"docs/concepts/stateful-stream-processing" >}}) and [time]({{< ref 
"docs/concepts/time" >}}), to build more complex stream processing use cases.
+* **PyFlink Table API** 允许使用类似于 SQL 或在 Python 中处理表格数据的方式编写强大的关系查询。
+* 与此同时,**PyFlink DataStream API** 提供对 Flink 的核心构建块 [state]({{< ref 
"docs/concepts/stateful-stream-processing" >}}) 和 [time]({{< ref 
"docs/concepts/time" >}}) 进行较低级别(粒度)的控制,以便构建更复杂的流处理用例。
 
 {{< columns >}}
 
-### Try PyFlink
+### 尝试 PyFlink
 
-If you’re interested in playing around with Flink, try one of our tutorials:
+如果你有兴趣使用 PyFlink,可以尝试以下任意教程:
 
-* [Intro to PyFlink DataStream API]({{< ref 
"docs/dev/python/datastream_tutorial" >}})
-* [Intro to PyFlink Table API]({{< ref "docs/dev/python/table_api_tutorial" 
>}})
+* [PyFlink DataStream API 介绍]({{< ref "docs/dev/python/datastream_tutorial" 
>}})
+* [PyFlink Table API 介绍]({{< ref "docs/dev/python/table_api_tutorial" >}})
 
 <--->
 
-### Explore PyFlink
+### 探究 PyFlink
 
-The reference documentation covers all the details. Some starting points:
+参考文档涵盖了 PyFlink 所有细节。一些起始链接如下:

Review comment:
       ```suggestion
   这些参考文档涵盖了 PyFlink 的所有细节,可以从以下链接入手:
   ```




-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

For queries about this service, please contact Infrastructure at:
us...@infra.apache.org


Reply via email to