Github user tillrohrmann commented on a diff in the pull request:

    https://github.com/apache/flink/pull/1898#discussion_r63508672
  
    --- Diff: 
flink-libraries/flink-ml/src/main/scala/org/apache/flink/ml/preprocessing/Splitter.scala
 ---
    @@ -0,0 +1,210 @@
    +/*
    + * Licensed to the Apache Software Foundation (ASF) under one
    + * or more contributor license agreements.  See the NOTICE file
    + * distributed with this work for additional information
    + * regarding copyright ownership.  The ASF licenses this file
    + * to you under the Apache License, Version 2.0 (the
    + * "License"); you may not use this file except in compliance
    + * with the License.  You may obtain a copy of the License at
    + *
    + *     http://www.apache.org/licenses/LICENSE-2.0
    + *
    + * Unless required by applicable law or agreed to in writing, software
    + * distributed under the License is distributed on an "AS IS" BASIS,
    + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    + * See the License for the specific language governing permissions and
    + * limitations under the License.
    + */
    +
    +package org.apache.flink.ml.preprocessing
    +
    +import org.apache.flink.api.common.typeinfo.{TypeInformation, 
BasicTypeInfo}
    +import org.apache.flink.api.java.Utils
    +import org.apache.flink.api.scala._
    +import org.apache.flink.api.scala.DataSet
    +import org.apache.flink.api.scala.utils._
    +
    +
    +import org.apache.flink.ml.common.{FlinkMLTools, ParameterMap, 
WithParameters}
    +import org.apache.flink.util.Collector
    +import _root_.scala.reflect.ClassTag
    +
    +object Splitter {
    +
    +  case class TrainTestDataSet[T: TypeInformation : ClassTag](training: 
DataSet[T],
    +                                                             testing: 
DataSet[T])
    +
    +  case class TrainTestHoldoutDataSet[T: TypeInformation : 
ClassTag](training: DataSet[T],
    +                                                                    
testing: DataSet[T],
    +                                                                    
holdout: DataSet[T])
    +  // 
--------------------------------------------------------------------------------------------
    +  //  randomSplit
    +  // 
--------------------------------------------------------------------------------------------
    +  /**
    +   * Split a DataSet by the probability fraction of each element.
    +   *
    +   * @param input           DataSet to be split
    +   * @param fraction        Probability that each element is chosen, 
should be [0,1] This fraction
    +   *                        refers to the first element in the resulting 
array.
    +   * @param precise         Sampling by default is random and can result 
in slightly lop-sided
    +   *                        sample sets. When precise is true, equal 
sample set size are forced,
    +   *                        however this is somewhat less efficient.
    +   * @param seed            Random number generator seed.
    +   * @return An array of two datasets
    +   */
    +
    +  def randomSplit[T: TypeInformation : ClassTag](
    +      input: DataSet[T],
    +      fraction: Double,
    +      precise: Boolean = false,
    +      seed: Long = Utils.RNG.nextLong())
    +    : Array[DataSet[T]] = {
    +    import org.apache.flink.api.scala._
    +
    +    val indexedInput: DataSet[(Long, T)] = input.zipWithUniqueId
    +
    +    if ((fraction >= 1) || (fraction <= 0)) {
    +      throw new IllegalArgumentException("sampling fraction outside of 
(0,1) bounds is nonsensical")
    +    }
    +
    +    val leftSplit: DataSet[(Long, T)] = precise match {
    +      case false => indexedInput.sample(false, fraction, seed)
    +      case true => {
    +        val count = indexedInput.count()
    +        val numOfSamples = math.round(fraction * count).toInt
    +        indexedInput.sampleWithSize(false, numOfSamples, seed)
    +      }
    +    }
    +
    +    val rightSplit: DataSet[T] = indexedInput.leftOuterJoin[(Long, 
T)](leftSplit)
    +      .where(0)
    +      .equalTo(0).apply {
    +        (full: (Long,T) , left: (Long, T), collector: Collector[T]) =>
    +        if (left == null) {
    +          collector.collect(full._2)
    +        }
    +    }
    +
    +    Array(leftSplit.map(o => o._2), rightSplit)
    +  }
    +
    +  // 
--------------------------------------------------------------------------------------------
    +  //  multiRandomSplit
    +  // 
--------------------------------------------------------------------------------------------
    +  /**
    +   * Split a DataSet by the probability fraction of each element of a 
vector.
    +   *
    +   * @param input           DataSet to be split
    +   * @param fracArray       An array of PROPORTIONS for splitting the 
DataSet. Unlike the
    +   *                        randomSplit function, number greater than 1 do 
not lead to over
    +   *                        sampling. The number of splits is dictated by 
the length of this array.
    +   *                        The number are normalized, eg. Array(1.0, 2.0) 
would yield
    +   *                        two data sets with a 33/66% split.
    +   * @param seed            Random number generator seed.
    +   * @return An array of DataSets whose length is equal to the length of 
fracArray
    +   */
    +  def multiRandomSplit[T: TypeInformation : ClassTag](
    +      input: DataSet[T],
    +      fracArray: Array[Double],
    +      seed: Long = Utils.RNG.nextLong())
    +    : Array[DataSet[T]] = {
    +
    +    import 
org.apache.commons.math3.distribution.EnumeratedIntegerDistribution
    +
    +    val eid = new EnumeratedIntegerDistribution((0 to fracArray.length - 
1).toArray, fracArray)
    +
    +    eid.reseedRandomGenerator(seed)
    +
    +    val tempDS: DataSet[(Int,T)] = input.map(o => (eid.sample, o))
    +
    +    val splits = fracArray.length
    +    val outputArray = new Array[DataSet[T]]( splits )
    +
    +    for (k <- 0 to splits-1){
    +      outputArray(k) = tempDS.filter(o => o._1 == k)
    +                             .map(o => o._2)
    +    }
    +
    +    outputArray
    +  }
    +
    +  // 
--------------------------------------------------------------------------------------------
    +  //  kFoldSplit
    +  // 
--------------------------------------------------------------------------------------------
    +  /**
    +   * Split a DataSet into an array of TrainTest DataSets
    +   *
    +   * @param input           DataSet to be split
    +   * @param kFolds          The number of TrainTest DataSets to be 
returns. Each 'testing' will be
    +   *                        1/k of the dataset, randomly sampled, the 
training will be the remainder
    +   *                        of the dataset.  The DataSet is split into 
kFolds first, so that no
    +   *                        observation will occurin in multiple folds.
    +   * @param seed            Random number generator seed.
    +   * @return An array of TrainTestDataSets
    +   */
    +  def kFoldSplit[T: TypeInformation : ClassTag](
    +      input: DataSet[T],
    +      kFolds: Int,
    +      seed: Long = Utils.RNG.nextLong())
    +    : Array[TrainTestDataSet[T]] = {
    +
    +    val fracs = Array.fill(kFolds)(1.0)
    +    val dataSetArray = multiRandomSplit(input, fracs, seed)
    +
    +    dataSetArray.map( ds => TrainTestDataSet(ds,
    +                                             dataSetArray.filter(_ != ds)
    +                                                         .reduce(_ union 
_) ))
    +
    +  }
    +
    +  // 
--------------------------------------------------------------------------------------------
    +  //  trainTestSplit
    +  // 
--------------------------------------------------------------------------------------------
    +  /**
    +   * A wrapper for randomSplit that yields a TrainTestDataSet
    +   *
    +   * @param input           DataSet to be split
    +   * @param fraction        Probability that each element is chosen, 
should be [0,1].
    +   *                        This fraction refers to the training element 
in TrainTestSplit
    +   * @param precise         Sampling by default is random and can result 
in slightly lop-sided
    +   *                        sample sets. When precise is true, equal 
sample set size are forced,
    +   *                        however this is somewhat less efficient.
    +   * @param seed            Random number generator seed.
    +   * @return A TrainTestDataSet
    +   */
    +  def trainTestSplit[T: TypeInformation : ClassTag](
    +      input: DataSet[T],
    +      fraction: Double = 0.6,
    +      precise: Boolean = false,
    +      seed: Long = Utils.RNG.nextLong())
    +    : TrainTestDataSet[T] = {
    +    val dataSetArray = randomSplit(input, fraction, precise, seed)
    +    TrainTestDataSet(dataSetArray(0), dataSetArray(1))
    +  }
    +
    +  // 
--------------------------------------------------------------------------------------------
    +  //  trainTestHoldoutSplit
    +  // 
--------------------------------------------------------------------------------------------
    +  /**
    +   * A wrapper for multiRandomSplit that yields a TrainTestHoldoutDataSet
    +   *
    +   * @param input           DataSet to be split
    +   * @param fracArray       An array of three doubles, where the first 
element specifies the
    +   *                        size of the training set, the second element 
the testing set, and
    +   *                        the third element is the holdout set. These 
are proportional and
    +   *                        will be normalized internally.
    +   * @param seed            Random number generator seed.
    +   * @return A TrainTestDataSet
    +   */
    +  def trainTestHoldoutSplit[T: TypeInformation : ClassTag](
    +      input: DataSet[T],
    +      fracArray: Array[Double] = Array(0.6,0.3,0.1),
    --- End diff --
    
    Why not requiring a `Tuple3[Double, Double, Double]` here, then we wouldn't 
have to do the check that the array has the correct length == one possibility 
where the user can shoot himself in the foot less ;-)


---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at infrastruct...@apache.org or file a JIRA ticket
with INFRA.
---

Reply via email to