[ https://issues.apache.org/jira/browse/FLINK-16627?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Flink Jira Bot reassigned FLINK-16627: -------------------------------------- Assignee: (was: jackray wang) > Support only generate non-null values when serializing into JSON > ---------------------------------------------------------------- > > Key: FLINK-16627 > URL: https://issues.apache.org/jira/browse/FLINK-16627 > Project: Flink > Issue Type: New Feature > Components: Formats (JSON, Avro, Parquet, ORC, SequenceFile), Table > SQL / Planner > Affects Versions: 1.10.0 > Reporter: jackray wang > Priority: Major > Labels: auto-unassigned, sprint > > {code:java} > //sql > CREATE TABLE sink_kafka ( subtype STRING , svt STRING ) WITH (……) > {code} > > {code:java} > //sql > CREATE TABLE source_kafka ( subtype STRING , svt STRING ) WITH (……) > {code} > > {code:java} > //scala udf > class ScalaUpper extends ScalarFunction { > def eval(str: String) : String= { > if(str == null){ > return "" > }else{ > return str > } > } > > } > btenv.registerFunction("scala_upper", new ScalaUpper()) > {code} > > {code:java} > //sql > insert into sink_kafka select subtype, scala_upper(svt) from source_kafka > {code} > > > ---- > Sometimes the svt's value is null, inert into kafkas json like > \{"subtype":"qin","svt":null} > If the amount of data is small, it is acceptable,but we process 10TB of data > every day, and there may be many nulls in the json, which affects the > efficiency. If you can add a parameter to remove the null key when defining a > sinktable, the performance will be greatly improved > > > > -- This message was sent by Atlassian Jira (v8.3.4#803005)