Github user rawkintrevo commented on a diff in the pull request: https://github.com/apache/flink/pull/1898#discussion_r61503436 --- Diff: flink-libraries/flink-ml/src/main/scala/org/apache/flink/ml/preprocessing/Splitter.scala --- @@ -0,0 +1,215 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one + * or more contributor license agreements. See the NOTICE file + * distributed with this work for additional information + * regarding copyright ownership. The ASF licenses this file + * to you under the Apache License, Version 2.0 (the + * "License"); you may not use this file except in compliance + * with the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.flink.ml.preprocessing + +import org.apache.flink.api.common.typeinfo.{TypeInformation, BasicTypeInfo} +import org.apache.flink.api.java.Utils +import org.apache.flink.api.scala. DataSet +import org.apache.flink.api.scala.utils._ + +import org.apache.flink.ml.common.{FlinkMLTools, ParameterMap, WithParameters} +import _root_.scala.reflect.ClassTag + +object Splitter { + + case class TrainTestDataSet[T: TypeInformation : ClassTag](training: DataSet[T], + testing: DataSet[T]) + + case class TrainTestHoldoutDataSet[T: TypeInformation : ClassTag](training: DataSet[T], + testing: DataSet[T], + holdout: DataSet[T]) + // -------------------------------------------------------------------------------------------- + // randomSplit + // -------------------------------------------------------------------------------------------- + /** + * Split a DataSet by the probability fraction of each element. + * + * @param input DataSet to be split + * @param fraction Probability that each element is chosen, should be [0,1] without + * replacement, and [0, â) with replacement. While fraction is larger + * than 1, the elements are expected to be selected multi times into + * sample on average. This fraction refers to the first element in the + * resulting array. + * @param precise Sampling by default is random and can result in slightly lop-sided + * sample sets. When precise is true, equal sample set size are forced, + * however this is somewhat less efficient. + * @param seed Random number generator seed. + * @return An array of two datasets + */ + + def randomSplit[T: TypeInformation : ClassTag]( input: DataSet[T], + fraction: Double, + precise: Boolean = false, + seed: Long = Utils.RNG.nextLong()) + : Array[DataSet[T]] = { + import org.apache.flink.api.scala._ + + val indexedInput: DataSet[(Long, T)] = input.zipWithIndex + + val leftSplit: DataSet[(Long, T)] = precise match { + case false => indexedInput.sample(false, fraction, seed) + case true => { + val count = indexedInput.count() + val numOfSamples = math.round(fraction * count).toInt + indexedInput.sampleWithSize(false, numOfSamples, seed) + } + } + + val rightSplit: DataSet[(Long, T)] = indexedInput.leftOuterJoin[(Long, T)](leftSplit) + .where(0) + .equalTo(0) { + (full: (Long,T) , left: (Long, T)) => (if (left == null) full else null) + } + .filter( o => o != null ) + Array(leftSplit.map(o => o._2), rightSplit.map(o => o._2)) + } + + // -------------------------------------------------------------------------------------------- + // multiRandomSplit + // -------------------------------------------------------------------------------------------- + /** + * Split a DataSet by the probability fraction of each element of a vector. + * + * @param input DataSet to be split + * @param fracArray An array of PROPORTIONS for splitting the DataSet. Unlike the + * randomSplit function, number greater than 1 do not lead to over + * sampling. The number of splits is dictated by the length of this array. + * The number are normalized, eg. Array(1.0, 2.0) would yield + * two data sets with a 33/66% split. + * @param precise Sampling by default is random and can result in slightly lop-sided + * sample sets. When precise is true, equal sample set size are forced, + * however this is somewhat less efficient. + * @param seed Random number generator seed. + * @return An array of DataSets whose length is equal to the length of fracArray + */ + def multiRandomSplit[T: TypeInformation : ClassTag](input: DataSet[T], + fracArray: Array[Double], + precise: Boolean = false, + seed: Long = Utils.RNG.nextLong()) + : Array[DataSet[T]] = { + val splits = fracArray.length + val output = new Array[DataSet[T]](splits) + val aggs = fracArray.scanRight((0.0))( _ + _ ) + val fracs = fracArray.zip(aggs).map( o => o._1 / o._2) + + //// + var tempDS = input + for (k <- 0 to splits-2){ + println( (splits -k)) + var temp = Splitter.randomSplit(tempDS, fracs(k), true) + output(k) = temp(0) + tempDS = temp(1) + } + output(splits-1) = tempDS + output + } + + // -------------------------------------------------------------------------------------------- + // kFoldSplit + // -------------------------------------------------------------------------------------------- + /** + * Split a DataSet into an array of TrainTest DataSets + * + * @param input DataSet to be split + * @param kFolds The number of TrainTest DataSets to be returns. Each 'testing' will be + * 1/k of the dataset, randomly sampled, the training will be the remainder + * of the dataset. The DataSet is split into kFolds first, so that no + * observation will occurin in multiple folds. + * @param precise Sampling by default is random and can result in slightly lop-sided + * sample sets. When precise is true, equal sample set size are forced, + * however this is somewhat less efficient. + * @param seed Random number generator seed. + * @return An array of TrainTestDataSets + */ + def kFoldSplit[T: TypeInformation : ClassTag](input: DataSet[T], + kFolds: Int, + precise: Boolean = false, + seed: Long = Utils.RNG.nextLong()) + : Array[TrainTestDataSet[T]] = { + + val fracs = Array.fill(kFolds)(1.0) + val dataSetArray = multiRandomSplit(input, fracs, precise, seed) + + dataSetArray.zipWithIndex.map( ds => TrainTestDataSet(ds._1, + unionDataSetArray(dataSetArray.filter(_ != ds._1))) ) + + } + + def unionDataSetArray[T: TypeInformation : ClassTag](dsa : Array[DataSet[T]]): DataSet[T] = { + var dsu = dsa(0) + for (k <- 1 to dsa.length-1) { + dsu = dsu.union(dsa(k)) + } + dsu + } + + // -------------------------------------------------------------------------------------------- + // trainTestSplit + // -------------------------------------------------------------------------------------------- + /** + * A wrapper for randomSplit that yields a TrainTestDataSet + * + * @param input DataSet to be split + * @param fraction Probability that each element is chosen, should be [0,1] without + * replacement, and [0, â) with replacement. While fraction is larger + * than 1, the elements are expected to be selected multi times into + * sample on average. This fraction refers to the training element in + * TrainTestSplit + * @param precise Sampling by default is random and can result in slightly lop-sided + * sample sets. When precise is true, equal sample set size are forced, + * however this is somewhat less efficient. + * @param seed Random number generator seed. + * @return A TrainTestDataSet + */ + def trainTestSplit[T: TypeInformation : ClassTag]( input: DataSet[T], + fraction: Double = 0.6, + precise: Boolean = false, + seed: Long = Utils.RNG.nextLong()) + : TrainTestDataSet[T] = { + val dataSetArray = randomSplit(input, fraction, precise, seed) + TrainTestDataSet(dataSetArray(0), dataSetArray(1)) + } + + // -------------------------------------------------------------------------------------------- + // trainTestHoldoutSplit + // -------------------------------------------------------------------------------------------- + /** + * A wrapper for multiRandomSplit that yields a TrainTestHoldoutDataSet + * + * @param input DataSet to be split + * @param fracArray An array of length 3, where the first element specifies the size of the + * training set, the second element the testing set, and the third + * element is the holdout set. These are proportional and will be + * normalized internally. + * @param precise Sampling by default is random and can result in slightly lop-sided + * sample sets. When precise is true, equal sample set size are forced, + * however this is somewhat less efficient. + * @param seed Random number generator seed. + * @return A TrainTestDataSet + */ + def trainTestHoldoutSplit[T: TypeInformation : ClassTag](input: DataSet[T], + fracArray: Array[Double] = Array(0.6,0.3,0.1), --- End diff -- couldn't figure a way to coerce a tuple3 into a typed array that was less invasive than simply throwing the exception.
--- If your project is set up for it, you can reply to this email and have your reply appear on GitHub as well. If your project does not have this feature enabled and wishes so, or if the feature is enabled but not working, please contact infrastructure at infrastruct...@apache.org or file a JIRA ticket with INFRA. ---