[ https://issues.apache.org/jira/browse/FLINK-20612?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Zhu Zhu closed FLINK-20612. --------------------------- Resolution: Fixed Close this ticket because the curve so far looks good without large variations. I also discussed with [~Thesharing] about whether to increase the parallelism. But given that the benchmark stability looks acceptable at the moment, and increasing the parallelism may not make too much difference after the improvement in FLINK-21110. The conclusion is we leave the parallelism to be 4000 for now. > Add benchmarks for scheduler > ---------------------------- > > Key: FLINK-20612 > URL: https://issues.apache.org/jira/browse/FLINK-20612 > Project: Flink > Issue Type: Improvement > Components: Benchmarks, Runtime / Coordination > Affects Versions: 1.13.0 > Reporter: Zhilong Hong > Assignee: Zhilong Hong > Priority: Major > Labels: pull-request-available > Fix For: 1.13.0 > > > With Flink 1.12, we failed to run large-scale jobs on our cluster. When we > were trying to run the jobs, we met the exceptions like out of heap memory, > taskmanager heartbeat timeout, and etc. We increased the size of heap memory > and extended the heartbeat timeout, the job still failed. After the > troubleshooting, we found that there are some performance bottlenecks in the > jobmaster. These bottlenecks are highly related to the complexity of the > topology. > We implemented several benchmarks on these bottlenecks based on > flink-benchmark. The topology of the benchmarks is a simple graph, which > consists of only two vertices: one source vertex and one sink vertex. They > are both connected with all-to-all blocking edges. The parallelisms of the > vertices are both 8000. The execution mode is batch. The results of the > benchmarks are illustrated below: > Table 1: The result of benchmarks on bottlenecks in the jobmaster > | |*Time spent*| > |Build topology|45725.466 ms| > |Init scheduling strategy|38960.602 ms| > |Deploy tasks|17472.884 ms| > |Calculate failover region to restart|12960.912 ms| > We'd like to propose these benchmarks for procedures related to the > scheduler. There are three main benefits: > # They help us to understand the current status of task deployment > performance and locate where the bottleneck is. > # We can use the benchmarks to evaluate the optimization in the future. > # As we run the benchmarks daily, they will help us to trace how the > performance changes and locate the commit that introduces the performance > regression if there is any. > In the first version of the benchmarks, we mainly focus on the procedures we > mentioned above. The methods corresponding to the procedures are: > # Building topology: {{ExecutionGraph#attachJobGraph}} > # Initializing scheduling strategies: > {{PipelinedRegionSchedulingStrategy#init}} > # Deploying tasks: {{Execution#deploy}} > # Calculating failover regions: > {{RestartPipelinedRegionFailoverStrategy#getTasksNeedingRestart}} > In the benchmarks, the topology consists of two vertices: source -> sink. > They are connected with all-to-all edges. The result partition type > ({{PIPELINED}} and {{BLOCKING}}) should be considered separately. -- This message was sent by Atlassian Jira (v8.3.4#803005)