[ 
https://issues.apache.org/jira/browse/FLINK-1994?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15089529#comment-15089529
 ] 

ASF GitHub Bot commented on FLINK-1994:
---------------------------------------

Github user tillrohrmann commented on a diff in the pull request:

    https://github.com/apache/flink/pull/1397#discussion_r49211433
  
    --- Diff: 
flink-staging/flink-ml/src/main/scala/org/apache/flink/ml/optimization/GradientDescent.scala
 ---
    @@ -54,14 +54,15 @@ abstract class GradientDescent extends IterativeSolver {
         */
       override def optimize(
         data: DataSet[LabeledVector],
    -    initialWeights: Option[DataSet[WeightVector]]): DataSet[WeightVector] 
= {
    +    initialWeights: Option[DataSet[WeightVector]]
    +                         ): DataSet[WeightVector] = {
    --- End diff --
    
    Indentation:
    ```
    override def optimize(
        data: ...
        initialWeights: ...)
      : DataSet[WeightVector] = {
    
    }
    ```


> Add different gain calculation schemes to SGD
> ---------------------------------------------
>
>                 Key: FLINK-1994
>                 URL: https://issues.apache.org/jira/browse/FLINK-1994
>             Project: Flink
>          Issue Type: Improvement
>          Components: Machine Learning Library
>            Reporter: Till Rohrmann
>            Assignee: Trevor Grant
>            Priority: Minor
>              Labels: ML, Starter
>
> The current SGD implementation uses as gain for the weight updates the 
> formula {{stepsize/sqrt(iterationNumber)}}. It would be good to make the gain 
> calculation configurable and to provide different strategies for that. For 
> example:
> * stepsize/(1 + iterationNumber)
> * stepsize*(1 + regularization * stepsize * iterationNumber)^(-3/4)
> See also how to properly select the gains [1].
> Resources:
> [1] http://arxiv.org/pdf/1107.2490.pdf



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

Reply via email to