[ 
https://issues.apache.org/jira/browse/FLINK-17313?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=17089484#comment-17089484
 ] 

Jark Wu commented on FLINK-17313:
---------------------------------

I still think the root cause is FLINK-15469. And the proposed way in the PR is 
just a workaround. 

The purpose of {{TypeMappingUtils.checkPhysicalLogicalTypeCompatible}} should 
check the logical and physical types are compatible, i.e. types are equal but 
ignore field names. It is used to guarantee the sink connector complies with 
the DDL. If the connector wants to support precision, then it has to use new 
type system, not the legacy TypeInformation which loses the precision. 

Any precision mismatch in the logical and physical types should fail (except 
legacy decimal), so I think {{supportsAvoidingCast}} here is a mistake and 
should use something more strict. The {{supportsAvoidingCast}} should be used 
in checks for query schema to sink schema. 

> Validation error when insert decimal/timestamp/varchar with precision into 
> sink using TypeInformation of row
> ------------------------------------------------------------------------------------------------------------
>
>                 Key: FLINK-17313
>                 URL: https://issues.apache.org/jira/browse/FLINK-17313
>             Project: Flink
>          Issue Type: Bug
>          Components: Table SQL / Planner
>            Reporter: Terry Wang
>            Priority: Major
>              Labels: pull-request-available
>
> Test code like follwing(in blink planner):
> {code:java}
>               tEnv.sqlUpdate("create table randomSource (" +
>                                               "               a varchar(10)," 
> +
>                                               "               b 
> decimal(20,2)" +
>                                               "       ) with (" +
>                                               "               'type' = 
> 'random'," +
>                                               "               'count' = '10'" 
> +
>                                               "       )");
>               tEnv.sqlUpdate("create table printSink (" +
>                                               "               a varchar(10)," 
> +
>                                               "               b 
> decimal(22,2)," +
>                                               "               c 
> timestamp(3)," +
>                                               "       ) with (" +
>                                               "       'type' = 'print'" +
>                                               "       )");
>               tEnv.sqlUpdate("insert into printSink select *, 
> current_timestamp from randomSource");
>               tEnv.execute("");
> {code}
> Print TableSink implements UpsertStreamTableSink and it's getReocrdType is as 
> following:
> {code:java}
> public TypeInformation<Row> getRecordType() {
>               return getTableSchema().toRowType();
>       }
> {code}
> Varchar column validation exception is:
> org.apache.flink.table.api.ValidationException: Type VARCHAR(10) of table 
> field 'a' does not match with the physical type STRING of the 'a' field of 
> the TableSink consumed type.
>       at 
> org.apache.flink.table.utils.TypeMappingUtils.lambda$checkPhysicalLogicalTypeCompatible$4(TypeMappingUtils.java:165)
>       at 
> org.apache.flink.table.utils.TypeMappingUtils$1.defaultMethod(TypeMappingUtils.java:278)
>       at 
> org.apache.flink.table.utils.TypeMappingUtils$1.defaultMethod(TypeMappingUtils.java:255)
>       at 
> org.apache.flink.table.types.logical.utils.LogicalTypeDefaultVisitor.visit(LogicalTypeDefaultVisitor.java:67)
>       at 
> org.apache.flink.table.types.logical.VarCharType.accept(VarCharType.java:157)
>       at 
> org.apache.flink.table.utils.TypeMappingUtils.checkIfCompatible(TypeMappingUtils.java:255)
>       at 
> org.apache.flink.table.utils.TypeMappingUtils.checkPhysicalLogicalTypeCompatible(TypeMappingUtils.java:161)
>       at 
> org.apache.flink.table.planner.sinks.TableSinkUtils$$anonfun$validateLogicalPhysicalTypesCompatible$1.apply$mcVI$sp(TableSinkUtils.scala:315)
>       at scala.collection.immutable.Range.foreach$mVc$sp(Range.scala:160)
>       at 
> org.apache.flink.table.planner.sinks.TableSinkUtils$.validateLogicalPhysicalTypesCompatible(TableSinkUtils.scala:308)
>       at 
> org.apache.flink.table.planner.delegation.PlannerBase$$anonfun$2.apply(PlannerBase.scala:195)
>       at 
> org.apache.flink.table.planner.delegation.PlannerBase$$anonfun$2.apply(PlannerBase.scala:191)
>       at scala.Option.map(Option.scala:146)
>       at 
> org.apache.flink.table.planner.delegation.PlannerBase.translateToRel(PlannerBase.scala:191)
>       at 
> org.apache.flink.table.planner.delegation.PlannerBase$$anonfun$1.apply(PlannerBase.scala:150)
>       at 
> org.apache.flink.table.planner.delegation.PlannerBase$$anonfun$1.apply(PlannerBase.scala:150)
>       at 
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
>       at 
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
>       at scala.collection.Iterator$class.foreach(Iterator.scala:891)
>       at scala.collection.AbstractIterator.foreach(Iterator.scala:1334)
>       at scala.collection.IterableLike$class.foreach(IterableLike.scala:72)
>       at scala.collection.AbstractIterable.foreach(Iterable.scala:54)
>       at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
>       at scala.collection.AbstractTraversable.map(Traversable.scala:104)
>       at 
> org.apache.flink.table.planner.delegation.PlannerBase.translate(PlannerBase.scala:150)
>       at 
> org.apache.flink.table.api.internal.TableEnvironmentImpl.translate(TableEnvironmentImpl.java:863)
>       at 
> org.apache.flink.table.api.internal.TableEnvironmentImpl.translateAndClearBuffer(TableEnvironmentImpl.java:855)
>       at 
> org.apache.flink.table.api.internal.TableEnvironmentImpl.execute(TableEnvironmentImpl.java:822)
> Other type validation exception is similar, I dig into and think it's caused 
> by TypeMappingUtils#checkPhysicalLogicalTypeCompatible. It seems that the 
> method doesn't consider the different physical and logical type validation 
> logic of source and sink:   logical type should be able to cover the physical 
> type in source, but physical type should be able to cover the logic type in 
> sink vice verse. Besides, the decimal type should be taken more carefully, 
> when target type is Legacy(Decimal), it should be able to accept any 
> precision decimal type.



--
This message was sent by Atlassian Jira
(v8.3.4#803005)

Reply via email to