[ 
https://issues.apache.org/jira/browse/FLINK-17313?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=17089300#comment-17089300
 ] 

Jark Wu commented on FLINK-17313:
---------------------------------

I think the root cause is that you are using the legacy type information which 
can't connect to planner smoothly. 
Because of the complexity, we don't plan to support new type system for 
UpsertStreamTableSink. But will fully support new system for FLIP-95 new sink 
interface. I think your problem will be solved once FLIP-95 is finished. 


> Validation error when insert decimal/timestamp/varchar with precision into 
> sink using TypeInformation of row
> ------------------------------------------------------------------------------------------------------------
>
>                 Key: FLINK-17313
>                 URL: https://issues.apache.org/jira/browse/FLINK-17313
>             Project: Flink
>          Issue Type: Bug
>          Components: Table SQL / Planner
>            Reporter: Terry Wang
>            Priority: Major
>              Labels: pull-request-available
>
> Test code like follwing(in blink planner):
> {code:java}
>               tEnv.sqlUpdate("create table randomSource (" +
>                                               "               a varchar(10)," 
> +
>                                               "               b 
> decimal(20,2)" +
>                                               "       ) with (" +
>                                               "               'type' = 
> 'random'," +
>                                               "               'count' = '10'" 
> +
>                                               "       )");
>               tEnv.sqlUpdate("create table printSink (" +
>                                               "               a varchar(10)," 
> +
>                                               "               b 
> decimal(22,2)," +
>                                               "               c 
> timestamp(3)," +
>                                               "       ) with (" +
>                                               "       'type' = 'print'" +
>                                               "       )");
>               tEnv.sqlUpdate("insert into printSink select *, 
> current_timestamp from randomSource");
>               tEnv.execute("");
> {code}
> Print TableSink implements UpsertStreamTableSink and it's getReocrdType is as 
> following:
> {code:java}
> public TypeInformation<Row> getRecordType() {
>               return getTableSchema().toRowType();
>       }
> {code}
> Varchar column validation exception is:
> org.apache.flink.table.api.ValidationException: Type VARCHAR(10) of table 
> field 'a' does not match with the physical type STRING of the 'a' field of 
> the TableSink consumed type.
>       at 
> org.apache.flink.table.utils.TypeMappingUtils.lambda$checkPhysicalLogicalTypeCompatible$4(TypeMappingUtils.java:165)
>       at 
> org.apache.flink.table.utils.TypeMappingUtils$1.defaultMethod(TypeMappingUtils.java:278)
>       at 
> org.apache.flink.table.utils.TypeMappingUtils$1.defaultMethod(TypeMappingUtils.java:255)
>       at 
> org.apache.flink.table.types.logical.utils.LogicalTypeDefaultVisitor.visit(LogicalTypeDefaultVisitor.java:67)
>       at 
> org.apache.flink.table.types.logical.VarCharType.accept(VarCharType.java:157)
>       at 
> org.apache.flink.table.utils.TypeMappingUtils.checkIfCompatible(TypeMappingUtils.java:255)
>       at 
> org.apache.flink.table.utils.TypeMappingUtils.checkPhysicalLogicalTypeCompatible(TypeMappingUtils.java:161)
>       at 
> org.apache.flink.table.planner.sinks.TableSinkUtils$$anonfun$validateLogicalPhysicalTypesCompatible$1.apply$mcVI$sp(TableSinkUtils.scala:315)
>       at scala.collection.immutable.Range.foreach$mVc$sp(Range.scala:160)
>       at 
> org.apache.flink.table.planner.sinks.TableSinkUtils$.validateLogicalPhysicalTypesCompatible(TableSinkUtils.scala:308)
>       at 
> org.apache.flink.table.planner.delegation.PlannerBase$$anonfun$2.apply(PlannerBase.scala:195)
>       at 
> org.apache.flink.table.planner.delegation.PlannerBase$$anonfun$2.apply(PlannerBase.scala:191)
>       at scala.Option.map(Option.scala:146)
>       at 
> org.apache.flink.table.planner.delegation.PlannerBase.translateToRel(PlannerBase.scala:191)
>       at 
> org.apache.flink.table.planner.delegation.PlannerBase$$anonfun$1.apply(PlannerBase.scala:150)
>       at 
> org.apache.flink.table.planner.delegation.PlannerBase$$anonfun$1.apply(PlannerBase.scala:150)
>       at 
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
>       at 
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
>       at scala.collection.Iterator$class.foreach(Iterator.scala:891)
>       at scala.collection.AbstractIterator.foreach(Iterator.scala:1334)
>       at scala.collection.IterableLike$class.foreach(IterableLike.scala:72)
>       at scala.collection.AbstractIterable.foreach(Iterable.scala:54)
>       at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
>       at scala.collection.AbstractTraversable.map(Traversable.scala:104)
>       at 
> org.apache.flink.table.planner.delegation.PlannerBase.translate(PlannerBase.scala:150)
>       at 
> org.apache.flink.table.api.internal.TableEnvironmentImpl.translate(TableEnvironmentImpl.java:863)
>       at 
> org.apache.flink.table.api.internal.TableEnvironmentImpl.translateAndClearBuffer(TableEnvironmentImpl.java:855)
>       at 
> org.apache.flink.table.api.internal.TableEnvironmentImpl.execute(TableEnvironmentImpl.java:822)
> Other type validation exception is similar, I dig into and think it's caused 
> by TypeMappingUtils#checkPhysicalLogicalTypeCompatible. It seems that the 
> method doesn't consider the different physical and logical type validation 
> logic of source and sink:   logical type should be able to cover the physical 
> type in source, but physical type should be able to cover the logic type in 
> sink vice verse. Besides, the decimal type should be taken more carefully, 
> when target type is Legacy(Decimal), it should be able to accept any 
> precision decimal type.



--
This message was sent by Atlassian Jira
(v8.3.4#803005)

Reply via email to