Maximilian Michels created FLINK-3020: -----------------------------------------
Summary: Local execution: set number of task manager slots to the maximum parallelism Key: FLINK-3020 URL: https://issues.apache.org/jira/browse/FLINK-3020 Project: Flink Issue Type: Bug Components: Local Runtime Affects Versions: 0.10.0 Reporter: Maximilian Michels Assignee: Maximilian Michels Priority: Minor Fix For: 1.0.0, 0.10.1 Quite an inconvenience is the local execution configuration behavior. It sets the number of task slots of the mini cluster to the default parallelism. This causes problem if you use {{setParallelism(parallelism)}} on an operator and set a parallelism larger than the default parallelism. {noformat} Caused by: org.apache.flink.runtime.jobmanager.scheduler.NoResourceAvailableException: Not enough free slots available to run the job. You can decrease the operator parallelism or increase the number of slots per TaskManager in the configuration. Task to schedule: < Attempt #0 (Flat Map (9/100)) @ (unassigned) - [SCHEDULED] > with groupID < fa7240ee1fed08bd7e6278899db3e838 > in sharing group < SlotSharingGroup [f3d578e9819be9c39ceee86cf5eb8c08, 8fa330746efa1d034558146e4604d0b4, fa7240ee1fed08bd7e6278899db3e838] >. Resources available to scheduler: Number of instances=1, total number of slots=8, available slots=0 at org.apache.flink.runtime.jobmanager.scheduler.Scheduler.scheduleTask(Scheduler.java:256) at org.apache.flink.runtime.jobmanager.scheduler.Scheduler.scheduleImmediately(Scheduler.java:131) at org.apache.flink.runtime.executiongraph.Execution.scheduleForExecution(Execution.java:298) at org.apache.flink.runtime.executiongraph.ExecutionVertex.scheduleForExecution(ExecutionVertex.java:458) at org.apache.flink.runtime.executiongraph.ExecutionJobVertex.scheduleAll(ExecutionJobVertex.java:322) at org.apache.flink.runtime.executiongraph.ExecutionGraph.scheduleForExecution(ExecutionGraph.java:686) at org.apache.flink.runtime.jobmanager.JobManager$$anonfun$org$apache$flink$runtime$jobmanager$JobManager$$submitJob$1.apply$mcV$sp(JobManager.scala:982) at org.apache.flink.runtime.jobmanager.JobManager$$anonfun$org$apache$flink$runtime$jobmanager$JobManager$$submitJob$1.apply(JobManager.scala:962) at org.apache.flink.runtime.jobmanager.JobManager$$anonfun$org$apache$flink$runtime$jobmanager$JobManager$$submitJob$1.apply(JobManager.scala:962) at scala.concurrent.impl.Future$PromiseCompletingRunnable.liftedTree1$1(Future.scala:24) at scala.concurrent.impl.Future$PromiseCompletingRunnable.run(Future.scala:24) at akka.dispatch.TaskInvocation.run(AbstractDispatcher.scala:41) at akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:401) at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260) at scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339) ... 2 more {noformat} I propose to change this behavior to setting the number of task slots to the maximum parallelism present in the user program. What do you think? -- This message was sent by Atlassian JIRA (v6.3.4#6332)