klion26 commented on a change in pull request #8750: [FLINK-11606] Translate 
the "Distributed Runtime Environment" page in to Chinese
URL: https://github.com/apache/flink/pull/8750#discussion_r294129377
 
 

 ##########
 File path: docs/concepts/runtime.zh.md
 ##########
 @@ -26,102 +26,74 @@ under the License.
 * This will be replaced by the TOC
 {:toc}
 
-## Tasks and Operator Chains
+## 任务和算子链
 
-For distributed execution, Flink *chains* operator subtasks together into 
*tasks*. Each task is executed by one thread.
-Chaining operators together into tasks is a useful optimization: it reduces 
the overhead of thread-to-thread
-handover and buffering, and increases overall throughput while decreasing 
latency.
-The chaining behavior can be configured; see the [chaining 
docs](../dev/stream/operators/#task-chaining-and-resource-groups) for details.
+分布式计算中,Flink 将算子(operator)的 subtask *链接(chain)*成 task。每个 task 由一个线程执行。把算子链接成 
tasks 是一个很好的优化:它减少了线程间切换和缓冲的开销,并在降低延迟的同时提高了整体吞吐量。链接操作的配置详情可参考:[chaining 
docs](../dev/stream/operators/#task-chaining-and-resource-groups)
 
-The sample dataflow in the figure below is executed with five subtasks, and 
hence with five parallel threads.
+下图的 dataflow 由五个 subtasks 执行,因此具有五个并行线程。
 
 <img src="{{ site.baseurl }}/fig/tasks_chains.svg" alt="Operator chaining into 
Tasks" class="offset" width="80%" />
 
 {% top %}
 
-## Job Managers, Task Managers, Clients
+## Job Managers、Task Managers、客户端(Clients)
 
-The Flink runtime consists of two types of processes:
+Flink 运行时包含两类进程:
 
-  - The **JobManagers** (also called *masters*) coordinate the distributed 
execution. They schedule tasks, coordinate
-    checkpoints, coordinate recovery on failures, etc.
+  - **JobManagers** (也称为 *masters*)协调分布式计算。它们负责调度任务、协调 checkpoints、协调故障恢复等。
 
-    There is always at least one Job Manager. A high-availability setup will 
have multiple JobManagers, one of
-    which one is always the *leader*, and the others are *standby*.
+    至少需要一个 JobManager。高可用部署下会有多个 JobManagers,其中一个作为 *leader*,其余处于 *standby* 状态。
 
-  - The **TaskManagers** (also called *workers*) execute the *tasks* (or more 
specifically, the subtasks) of a dataflow,
-    and buffer and exchange the data *streams*.
+  - **TaskManagers**(也称为 *workers*)执行 dataflow 中的 *tasks*(准确来说是 subtasks 
),并且缓存和交换数据 *streams*。
 
-    There must always be at least one TaskManager.
+    至少需要一个 TaskManager。
 
-The JobManagers and TaskManagers can be started in various ways: directly on 
the machines as a [standalone cluster](../ops/deployment/cluster_setup.html), in
-containers, or managed by resource frameworks like 
[YARN](../ops/deployment/yarn_setup.html) or 
[Mesos](../ops/deployment/mesos.html).
-TaskManagers connect to JobManagers, announcing themselves as available, and 
are assigned work.
+JobManagers 和 TaskManagers 可由多种方式启动:可以直接在机器上启动(该集群称为 [standalone 
cluster](../ops/deployment/cluster_setup.html)),也可以在容器或资源管理框架,如 
[YARN](../ops/deployment/yarn_setup.html) 或 
[Mesos](../ops/deployment/mesos.html),中启动。TaskManagers 连接到 
JobManagers,通知后者自己可用,之后 TaskManagers 便可以被分配工作了。
 
-The **client** is not part of the runtime and program execution, but is used 
to prepare and send a dataflow to the JobManager.
-After that, the client can disconnect, or stay connected to receive progress 
reports. The client runs either as part of the
-Java/Scala program that triggers the execution, or in the command line process 
`./bin/flink run ...`.
+**客户端**不是运行时(runtime)和作业执行时的一部分,但它是被用来准备和发送 dataflow 到 JobManager 
的。在那之后,客户端可以断开连接,也可以保持连接来接收进度报告。客户端既可以作为触发执行的 Java / Scala 
程序的一部分,也可以在命令行进程中运行`./bin/flink run ...`。
 
 <img src="{{ site.baseurl }}/fig/processes.svg" alt="The processes involved in 
executing a Flink dataflow" class="offset" width="80%" />
 
 {% top %}
 
-## Task Slots and Resources
+## Task Slots 和资源
 
-Each worker (TaskManager) is a *JVM process*, and may execute one or more 
subtasks in separate threads.
-To control how many tasks a worker accepts, a worker has so called **task 
slots** (at least one).
+每个 worker(TaskManager)都是一个 *JVM 进程*,并且可以在不同的线程中执行一个或多个 subtasks。为了控制 worker 接收 
task 的数量,worker 拥有所谓的  **task slots** (至少一个)。
 
-Each *task slot* represents a fixed subset of resources of the TaskManager. A 
TaskManager with three slots, for example,
-will dedicate 1/3 of its managed memory to each slot. Slotting the resources 
means that a subtask will not
-compete with subtasks from other jobs for managed memory, but instead has a 
certain amount of reserved
-managed memory. Note that no CPU isolation happens here; currently slots only 
separate the managed memory of tasks.
+每个 *task slots*代表 TaskManager 的一份固定资源子集。例如,具有三个 slots 的 TaskManager 
会将其管理的内存资源分成三等份给每个 slot。 划分资源意味着 subtask 之间不会竞争资源,但是也意味着它们只拥有固定的资源。注意这里并没有 CPU 
隔离,当前 slots 之间只是划分任务的内存资源。
 
 Review comment:
   ```suggestion
   每个 *task slots* 代表 TaskManager 的一份固定资源子集。例如,具有三个 slots 的 TaskManager 
会将其管理的内存资源分成三等份给每个 slot。 划分资源意味着 subtask 之间不会竞争资源,但是也意味着它们只拥有固定的资源。注意这里并没有 CPU 
隔离,当前 slots 之间只是划分任务的内存资源。
   ```

----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
 
For queries about this service, please contact Infrastructure at:
us...@infra.apache.org


With regards,
Apache Git Services

Reply via email to