[ 
https://issues.apache.org/jira/browse/FLINK-1728?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16780139#comment-16780139
 ] 

Seungchul Lee commented on FLINK-1728:
--------------------------------------

[~till.rohrmann]

Hi,

I would like to know the status of this issue. If the status has no progress, 
can I take this issue?

> Add random forest ensemble method to machine learning library
> -------------------------------------------------------------
>
>                 Key: FLINK-1728
>                 URL: https://issues.apache.org/jira/browse/FLINK-1728
>             Project: Flink
>          Issue Type: New Feature
>          Components: Library / Machine Learning Library
>            Reporter: Till Rohrmann
>            Priority: Major
>              Labels: ML
>
> Random forests [2,3] are a well-established mean to mitigate the decision 
> trees' weakness of overfitting. Therefore this would be a valuable 
> contribution to Flink's machine learning library.
> Google [1] describes some of the techniques they used to do ensemble learning 
> of MapReduce. This could be helpful while implementing a distributed random 
> forest.
> Resources:
> [1] 
> [http://static.googleusercontent.com/media/research.google.com/en/us/pubs/archive/36296.pdf]
> [2] [http://www.stat.berkeley.edu/~breiman/randomforest2001.pdf]
> [3] [http://www.stat.berkeley.edu/~breiman/Using_random_forests_V3.1.pdf]



--
This message was sent by Atlassian JIRA
(v7.6.3#76005)

Reply via email to