Github user florianschmidt1994 commented on a diff in the pull request:

    https://github.com/apache/flink/pull/5482#discussion_r183712409
  
    --- Diff: 
flink-streaming-java/src/main/java/org/apache/flink/streaming/api/functions/TimeBoundedStreamJoinOperator.java
 ---
    @@ -0,0 +1,480 @@
    +/*
    + * Licensed to the Apache Software Foundation (ASF) under one
    + * or more contributor license agreements.  See the NOTICE file
    + * distributed with this work for additional information
    + * regarding copyright ownership.  The ASF licenses this file
    + * to you under the Apache License, Version 2.0 (the
    + * "License"); you may not use this file except in compliance
    + * with the License.  You may obtain a copy of the License at
    + *
    + *    http://www.apache.org/licenses/LICENSE-2.0
    + *
    + * Unless required by applicable law or agreed to in writing, software
    + * distributed under the License is distributed on an "AS IS" BASIS,
    + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    + * See the License for the specific language governing permissions and
    + * limitations under the License.
    + */
    +
    +package org.apache.flink.streaming.api.functions;
    +
    +import org.apache.flink.annotation.Internal;
    +import org.apache.flink.annotation.VisibleForTesting;
    +import org.apache.flink.api.common.state.MapState;
    +import org.apache.flink.api.common.state.MapStateDescriptor;
    +import org.apache.flink.api.common.typeutils.TypeSerializer;
    +import org.apache.flink.api.common.typeutils.base.BooleanSerializer;
    +import org.apache.flink.api.common.typeutils.base.ListSerializer;
    +import org.apache.flink.api.common.typeutils.base.LongSerializer;
    +import org.apache.flink.api.java.tuple.Tuple2;
    +import org.apache.flink.api.java.tuple.Tuple3;
    +import org.apache.flink.api.java.typeutils.runtime.TupleSerializer;
    +import org.apache.flink.runtime.state.StateInitializationContext;
    +import org.apache.flink.runtime.state.VoidNamespace;
    +import org.apache.flink.runtime.state.VoidNamespaceSerializer;
    +import org.apache.flink.streaming.api.operators.AbstractUdfStreamOperator;
    +import org.apache.flink.streaming.api.operators.InternalTimer;
    +import org.apache.flink.streaming.api.operators.InternalTimerService;
    +import org.apache.flink.streaming.api.operators.TimestampedCollector;
    +import org.apache.flink.streaming.api.operators.Triggerable;
    +import org.apache.flink.streaming.api.operators.TwoInputStreamOperator;
    +import org.apache.flink.streaming.api.watermark.Watermark;
    +import org.apache.flink.streaming.runtime.streamrecord.StreamRecord;
    +import org.apache.flink.util.OutputTag;
    +import org.apache.flink.util.Preconditions;
    +
    +import java.util.ArrayList;
    +import java.util.Iterator;
    +import java.util.List;
    +import java.util.Map;
    +
    +/**
    + * A TwoInputStreamOperator to execute time-bounded stream inner joins.
    + *
    + * <p>By using a configurable lower and upper bound this operator will 
emit exactly those pairs
    + * (T1, T2) where t2.ts ∈ [T1.ts + lowerBound, T1.ts + upperBound]. Both 
the lower and the
    + * upper bound can be configured to be either inclusive or exclusive.
    + *
    + * <p>As soon as elements are joined they are passed to a user-defined 
{@link TimeBoundedJoinFunction},
    + * as a {@link Tuple2}, with f0 being the left element and f1 being the 
right element
    + *
    + * <p>The basic idea of this implementation is as follows: Whenever we 
receive an element at
    + * {@link #processElement1(StreamRecord)} (a.k.a. the left side), we add 
it to the left buffer.
    + * We then check the right buffer to see whether there are any elements 
that can be joined. If
    + * there are, they are joined and passed to a user-defined {@link 
TimeBoundedJoinFunction}.
    + * The same happens the other way around when receiving an element on the 
right side.
    + *
    + * <p>In some cases the watermark needs to be delayed. This for example 
can happen if
    + * if t2.ts ∈ [t1.ts + 1, t1.ts + 2] and elements from t1 arrive earlier 
than elements from t2 and
    + * therefore get added to the left buffer. When an element now arrives on 
the right side, the
    + * watermark might have already progressed. The right element now gets 
joined with an
    + * older element from the left side, where the timestamp of the left 
element is lower than the
    + * current watermark, which would make this element late. This can be 
avoided by holding back the
    + * watermarks.
    + *
    + * <p>The left and right buffers are cleared from unused values 
periodically
    + * (triggered by watermarks) in order not to grow infinitely.
    + *
    + *
    + * @param <T1> The type of the elements in the left stream
    + * @param <T2> The type of the elements in the right stream
    + * @param <OUT> The output type created by the user-defined function
    + */
    +@Internal
    +public class TimeBoundedStreamJoinOperator<K, T1, T2, OUT>
    +   extends AbstractUdfStreamOperator<OUT, TimeBoundedJoinFunction<T1, T2, 
OUT>>
    +   implements TwoInputStreamOperator<T1, T2, OUT>, Triggerable<K, 
VoidNamespace> {
    +
    +   private static final String LEFT_BUFFER = "LEFT_BUFFER";
    +   private static final String RIGHT_BUFFER = "RIGHT_BUFFER";
    +   private static final String CLEANUP_TIMER_NAME = "CLEANUP_TIMER";
    +
    +   private final long lowerBound;
    +   private final long upperBound;
    +
    +   private final long inverseLowerBound;
    +   private final long inverseUpperBound;
    +
    +   private final boolean lowerBoundInclusive;
    +   private final boolean upperBoundInclusive;
    +
    +   private final TypeSerializer<T1> leftTypeSerializer;
    +   private final TypeSerializer<T2> rightTypeSerializer;
    +
    +   private final long bucketGranularity;
    +   private final long watermarkDelay;
    +
    +   private long lastWatermark = Long.MIN_VALUE;
    +
    +   private transient MapState<Long, List<Tuple3<T1, Long, Boolean>>> 
leftBuffer;
    +   private transient MapState<Long, List<Tuple3<T2, Long, Boolean>>> 
rightBuffer;
    +
    +   private transient TimestampedCollector<OUT> collector;
    +   private transient ContextImpl context;
    +
    +   private transient InternalTimerService<VoidNamespace> 
internalTimerService;
    +
    +   /**
    +    * Creates a new TimeBoundedStreamJoinOperator.
    +    *
    +    * @param lowerBound          The lower bound for evaluating if 
elements should be joined
    +    * @param upperBound          The upper bound for evaluating if 
elements should be joined
    +    * @param lowerBoundInclusive Whether or not to include elements where 
the timestamp matches
    +    *                            the lower bound
    +    * @param upperBoundInclusive Whether or not to include elements where 
the timestamp matches
    +    *                            the upper bound
    +    * @param udf                 A user-defined {@link 
TimeBoundedJoinFunction} that gets called
    +    *                            whenever two elements of T1 and T2 are 
joined
    +    */
    +   public TimeBoundedStreamJoinOperator(
    +                   long lowerBound,
    +                   long upperBound,
    +                   boolean lowerBoundInclusive,
    +                   boolean upperBoundInclusive,
    +                   long bucketGranularity,
    +                   TypeSerializer<T1> leftTypeSerializer,
    +                   TypeSerializer<T2> rightTypeSerializer,
    +                   TimeBoundedJoinFunction<T1, T2, OUT> udf) {
    +
    +           super(Preconditions.checkNotNull(udf));
    +
    +           Preconditions.checkArgument(lowerBound <= upperBound,
    +                   "lowerBound <= upperBound must be fulfilled");
    +           Preconditions.checkArgument(bucketGranularity > 0, "bucket size 
must be greater than zero");
    +
    +           this.lowerBound = lowerBound;
    +           this.upperBound = upperBound;
    +
    +           this.inverseLowerBound = -1 * upperBound;
    +           this.inverseUpperBound = -1 * lowerBound;
    +
    +           this.lowerBoundInclusive = lowerBoundInclusive;
    +           this.upperBoundInclusive = upperBoundInclusive;
    +           this.leftTypeSerializer = 
Preconditions.checkNotNull(leftTypeSerializer);
    +           this.rightTypeSerializer = 
Preconditions.checkNotNull(rightTypeSerializer);
    +
    +           this.bucketGranularity = bucketGranularity;
    +           this.watermarkDelay = (upperBound < 0) ? 0 : upperBound;
    +   }
    +
    +   @Override
    +   public void open() throws Exception {
    +           super.open();
    +           collector = new TimestampedCollector<>(output);
    +           context = new ContextImpl(userFunction);
    +           internalTimerService =
    +                   getInternalTimerService(CLEANUP_TIMER_NAME, 
VoidNamespaceSerializer.INSTANCE, this);
    +   }
    +
    +   @Override
    +   public void initializeState(StateInitializationContext context) throws 
Exception {
    +           super.initializeState(context);
    +
    +           @SuppressWarnings("unchecked")
    +           Class<Tuple3<T1, Long, Boolean>> leftTypedTuple =
    +                   (Class<Tuple3<T1, Long, Boolean>>) (Class<?>) 
Tuple3.class;
    +
    +           TupleSerializer<Tuple3<T1, Long, Boolean>> leftTupleSerializer 
= new TupleSerializer<>(
    +                   leftTypedTuple,
    +                   new TypeSerializer[]{
    +                           leftTypeSerializer,
    +                           LongSerializer.INSTANCE,
    +                           BooleanSerializer.INSTANCE
    +                   }
    +           );
    +
    +           @SuppressWarnings("unchecked")
    +           Class<Tuple3<T2, Long, Boolean>> rightTypedTuple =
    +                   (Class<Tuple3<T2, Long, Boolean>>) (Class<?>) 
Tuple3.class;
    +
    +           TupleSerializer<Tuple3<T2, Long, Boolean>> rightTupleSerializer 
= new TupleSerializer<>(
    +                   rightTypedTuple,
    +                   new TypeSerializer[]{
    +                           rightTypeSerializer,
    +                           LongSerializer.INSTANCE,
    +                           BooleanSerializer.INSTANCE
    +                   }
    +           );
    +
    +           this.leftBuffer = getRuntimeContext().getMapState(new 
MapStateDescriptor<>(
    +                   LEFT_BUFFER,
    +                   LongSerializer.INSTANCE,
    +                   new ListSerializer<>(leftTupleSerializer)
    +           ));
    +
    +           this.rightBuffer = getRuntimeContext().getMapState(new 
MapStateDescriptor<>(
    +                   RIGHT_BUFFER,
    +                   LongSerializer.INSTANCE,
    +                   new ListSerializer<>(rightTupleSerializer)
    +           ));
    +   }
    +
    +   /**
    +    * Process a {@link StreamRecord} from the left stream. Whenever an 
{@link StreamRecord}
    +    * arrives at the left stream, it will get added to the left buffer. 
Possible join candidates
    +    * for that element will be looked up from the right buffer and if the 
pair lies within the
    +    * user defined boundaries, it gets collected.
    +    *
    +    * @param record An incoming record to be joined
    +    * @throws Exception Can throw an Exception during state access
    +    */
    +   @Override
    +   public void processElement1(StreamRecord<T1> record) throws Exception {
    +
    +           T1 leftValue = record.getValue();
    +           long leftTs = record.getTimestamp();
    +
    +           long joinLowerBound = leftTs + lowerBound;
    +           long joinUpperBound = leftTs + upperBound;
    +
    +           if (leftTs == Long.MIN_VALUE) {
    +                   throw new RuntimeException("Time-bounded stream joins 
need to have timestamps " +
    +                           "assigned to elements, but current element has 
timestamp Long.MIN_VALUE");
    +           }
    +
    +           if (dataIsLate(leftTs)) {
    +                   return;
    +           }
    +
    +           addToLeftBuffer(leftValue, leftTs);
    +
    +           for (Map.Entry<Long, List<Tuple3<T2, Long, Boolean>>> entry : 
rightBuffer.entries()) {
    +                   long bucketStart = entry.getKey();
    +                   long bucketEnd = bucketStart + bucketGranularity;
    +
    +                   if (!(bucketEnd >= joinLowerBound && bucketStart <= 
joinUpperBound)) {
    +                           // skip buckets that are out of bounds
    +                           continue;
    +                   }
    +
    +                   List<Tuple3<T2, Long, Boolean>> fromBucket = 
entry.getValue();
    +
    +                   // check for each element in current bucket if it 
should be joined
    +                   for (Tuple3<T2, Long, Boolean> tuple : fromBucket) {
    +                           if (shouldBeJoined(leftTs, tuple.f1)) {
    +
    +                                   // collect joined tuple with left 
timestamp
    +                                   collect(leftValue, tuple.f0, leftTs, 
tuple.f1);
    +                           }
    +                   }
    +           }
    +
    +           registerCleanupTimer();
    +
    +   }
    +
    +   private void registerCleanupTimer() {
    +           if (this.lastWatermark == Long.MIN_VALUE) {
    +                   return;
    +           }
    +
    +           long triggerTime = this.lastWatermark + 1;
    +           
internalTimerService.registerEventTimeTimer(VoidNamespace.INSTANCE, 
triggerTime);
    +   }
    +
    +   /**
    +    * Process a {@link StreamRecord} from the right stream. Whenever a 
{@link StreamRecord}
    +    * arrives at the right stream, it will get added to the right buffer. 
Possible join candidates
    +    * for that element will be looked up from the left buffer and if the 
pair lies within the user
    +    * defined boundaries, it gets collected.
    +    *
    +    * @param record An incoming record to be joined
    +    * @throws Exception Can throw an exception during state access
    +    */
    +   @Override
    +   public void processElement2(StreamRecord<T2> record) throws Exception {
    +
    +           long rightTs = record.getTimestamp();
    +           T2 rightElem = record.getValue();
    +
    +           long joinLowerBound = rightTs + inverseLowerBound;
    +           long joinUpperBound = rightTs + inverseUpperBound;
    +
    +           addToRightBuffer(rightElem, rightTs);
    +
    +           if (rightTs == Long.MIN_VALUE) {
    +                   throw new RuntimeException("Time-bounded stream joins 
need to have timestamps " +
    +                           "assigned to elements, but current element has 
timestamp Long.MIN_VALUE");
    +           }
    +
    +           if (dataIsLate(rightTs)) {
    +                   return;
    +           }
    +
    +           for (Map.Entry<Long, List<Tuple3<T1, Long, Boolean>>> entry : 
leftBuffer.entries()) {
    +                   long bucketStart = entry.getKey();
    +                   long bucketEnd = bucketStart + bucketGranularity;
    +
    +                   if (!(bucketEnd >= joinLowerBound && bucketStart <= 
joinUpperBound)) {
    +                           // skip buckets that are out of bounds
    +                           continue;
    +                   }
    +
    +                   for (Tuple3<T1, Long, Boolean> tuple : 
entry.getValue()) {
    +                           if (shouldBeJoined(tuple.f1, rightTs)) {
    +
    +                                   // collect joined tuple with left 
timestamp
    +                                   collect(tuple.f0, rightElem, tuple.f1, 
rightTs);
    +                           }
    +                   }
    +           }
    +
    +           registerCleanupTimer();
    +   }
    +
    +   private boolean dataIsLate(long rightTs) {
    +           return this.lastWatermark != Long.MIN_VALUE && rightTs < 
lastWatermark - watermarkDelay;
    +   }
    +
    +   @Override
    +   public void processWatermark(Watermark mark) throws Exception {
    +
    +           // We can not clean our state here directly because we are not 
in a keyed context. Instead
    +           // we set a field containing the last watermark that we have 
seen, and for every element in
    +           // processElement1(...) / processElement2(...) we register a 
timer with time: watermark + 1
    +           // This watermark + 1 will then trigger the onEventTime(...) 
method for the next watermark,
    +           // where we are in a keyed context again, which we can use to 
clean up our state.
    +           this.lastWatermark = mark.getTimestamp();
    +
    +           if (timeServiceManager != null) {
    +                   timeServiceManager.advanceWatermark(mark);
    +           }
    +
    +           // emit the watermark with the calculated delay, so we don't 
produce late data
    +           output.emitWatermark(new Watermark(this.lastWatermark - 
watermarkDelay));
    +   }
    +
    +   private void collect(T1 left, T2 right, long leftTs, long rightTs) 
throws Exception {
    +           collector.setAbsoluteTimestamp(leftTs);
    +           context.leftTs = leftTs;
    +           context.rightTs = rightTs;
    +           userFunction.processElement(left, right, context, 
this.collector);
    +   }
    +
    +   private void removeFromLhsUntil(long maxCleanup) throws Exception {
    +
    +           Iterator<Map.Entry<Long, List<Tuple3<T1, Long, Boolean>>>> 
iterator = leftBuffer.iterator();
    +           while (iterator.hasNext()) {
    +                   Map.Entry<Long, List<Tuple3<T1, Long, Boolean>>> next = 
iterator.next();
    +                   if (next.getKey() + bucketGranularity <= maxCleanup) {
    +                           iterator.remove();
    --- End diff --
    
    With the effectively single-threaded execution model of the operators I 
don't think there should be any problems here, as far as I understand. The only 
other thread accessing the state should be the checkpointing one, and I'd 
assume that this happens in a safe manner. 
    I had a quick chat with @kl0u and he confirmed this


---

Reply via email to