[ https://issues.apache.org/jira/browse/FLINK-2157?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=14618314#comment-14618314 ]
ASF GitHub Bot commented on FLINK-2157: --------------------------------------- Github user tillrohrmann commented on a diff in the pull request: https://github.com/apache/flink/pull/871#discussion_r34132161 --- Diff: flink-staging/flink-ml/src/main/scala/org/apache/flink/ml/pipeline/Predictor.scala --- @@ -172,9 +198,42 @@ object Predictor { } } } + + /** [[EvaluateDataSetOperation]] which takes a [[PredictOperation]] to calculate a tuple + * of true label value and predicted label value, when provided with a DataSet of + * [[LabeledVector]]. + * + * @param predictOperation An implicit PredictOperation that takes a Flink Vector and returns + * a Double + * @tparam Instance The [[Predictor]] instance that calls the function + * @tparam Model The model that the calling [[Predictor]] uses for predictions + * @return An EvaluateDataSetOperation for LabeledVector + */ + implicit def LabeledVectorEvaluateDataSetOperation[ + Instance <: Predictor[Instance], + Model]( + implicit predictOperation: PredictOperation[Instance, Model, FlinkVector, Double]) + : EvaluateDataSetOperation[Instance, LabeledVector, Double] = { + new EvaluateDataSetOperation[Instance, LabeledVector, Double] { + override def evaluateDataSet( + instance: Instance, + evaluateParameters: ParameterMap, + testing: DataSet[LabeledVector]) + : DataSet[(Double, Double)] = { --- End diff -- indentation > Create evaluation framework for ML library > ------------------------------------------ > > Key: FLINK-2157 > URL: https://issues.apache.org/jira/browse/FLINK-2157 > Project: Flink > Issue Type: New Feature > Components: Machine Learning Library > Reporter: Till Rohrmann > Assignee: Theodore Vasiloudis > Labels: ML > Fix For: 0.10 > > > Currently, FlinkML lacks means to evaluate the performance of trained models. > It would be great to add some {{Evaluators}} which can calculate some score > based on the information about true and predicted labels. This could also be > used for the cross validation to choose the right hyper parameters. > Possible scores could be F score [1], zero-one-loss score, etc. > Resources > [1] [http://en.wikipedia.org/wiki/F1_score] -- This message was sent by Atlassian JIRA (v6.3.4#6332)