Github user peedeeX21 commented on a diff in the pull request: https://github.com/apache/flink/pull/700#discussion_r33471983 --- Diff: flink-staging/flink-ml/src/main/scala/org/apache/flink/ml/clustering/KMeans.scala --- @@ -0,0 +1,247 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one + * or more contributor license agreements. See the NOTICE file + * distributed with this work for additional information + * regarding copyright ownership. The ASF licenses this file + * to you under the Apache License, Version 2.0 (the + * "License"); you may not use this file except in compliance + * with the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.flink.ml.clustering + +import org.apache.flink.api.common.functions.RichMapFunction +import org.apache.flink.api.java.functions.FunctionAnnotation.ForwardedFields +import org.apache.flink.api.scala.{DataSet, _} +import org.apache.flink.configuration.Configuration +import org.apache.flink.ml.common.{LabeledVector, _} +import org.apache.flink.ml.math.Breeze._ +import org.apache.flink.ml.math.Vector +import org.apache.flink.ml.metrics.distances.EuclideanDistanceMetric +import org.apache.flink.ml.pipeline._ + +import scala.collection.JavaConverters._ + + +/** + * Implements the KMeans algorithm which calculates cluster centroids based on set of training data + * points and a set of k initial centroids. + * + * [[KMeans]] is a [[Predictor]] which needs to be trained on a set of data points and can then be + * used to assign new points to the learned cluster centroids. + * + * The KMeans algorithm works as described on Wikipedia + * (http://en.wikipedia.org/wiki/K-means_clustering): + * + * Given an initial set of k means m1(1),â¦,mk(1) (see below), the algorithm proceeds by alternating + * between two steps: + * + * ===Assignment step:=== + * + * Assign each observation to the cluster whose mean yields the least within-cluster sum of + * squares (WCSS). Since the sum of squares is the squared Euclidean distance, this is intuitively + * the "nearest" mean. (Mathematically, this means partitioning the observations according to the + * Voronoi diagram generated by the means). + * + * `S_i^(t) = { x_p : || x_p - m_i^(t) ||^2 ⤠|| x_p - m_j^(t) ||^2 \forall j, 1 ⤠j ⤠k}`, + * where each `x_p` is assigned to exactly one `S^{(t)}`, even if it could be assigned to two or + * more of them. + * + * ===Update step:=== + * + * Calculate the new means to be the centroids of the observations in the new clusters. + * + * `m^{(t+1)}_i = ( 1 / |S^{(t)}_i| ) \sum_{x_j \in S^{(t)}_i} x_j` + * + * Since the arithmetic mean is a least-squares estimator, this also minimizes the within-cluster + * sum of squares (WCSS) objective. + * + * @example + * {{{ + * val trainingDS: DataSet[Vector] = env.fromCollection(Clustering.trainingData) + * val initialCentroids: DataSet[LabledVector] = env.fromCollection(Clustering.initCentroids) + * + * val kmeans = KMeans() + * .setInitialCentroids(initialCentroids) + * .setNumIterations(10) + * + * kmeans.fit(trainingDS) + * + * // getting the computed centroids + * val centroidsResult = kmeans.centroids.get.collect() + * + * // get matching clusters for new points + * val testDS: DataSet[Vector] = env.fromCollection(Clustering.testData) + * val clusters: DataSet[LabeledVector] = kmeans.predict(testDS) + * }}} + * + * =Parameters= + * + * - [[org.apache.flink.ml.clustering.KMeans.NumIterations]]: + * Defines the number of iterations to recalculate the centroids of the clusters. As it + * is a heuristic algorithm, there is no guarantee that it will converge to the global optimum. The + * centroids of the clusters and the reassignment of the data points will be repeated till the + * given number of iterations is reached. + * (Default value: '''10''') + * + * - [[org.apache.flink.ml.clustering.KMeans.InitialCentroids]]: + * Defines the initial k centroids of the k clusters. They are used as start off point of the + * algorithm for clustering the data set. The centroids are recalculated as often as set in + * [[org.apache.flink.ml.clustering.KMeans.NumIterations]]. The choice of the initial centroids + * mainly affects the outcome of the algorithm. + * + */ +class KMeans extends Predictor[KMeans] { + + import KMeans._ + + /** Stores the learned clusters after the fit operation */ + var centroids: Option[DataSet[LabeledVector]] = None + + /** + * Sets the number of iterations. + * + * @param numIterations + * @return itself + */ + def setNumIterations(numIterations: Int): KMeans = { + parameters.add(NumIterations, numIterations) + this + } + + /** + * Sets the initial centroids on which the algorithm will start computing. + * These points should depend on the data and significantly influence the resulting centroids. + * + * @param initialCentroids A sequence of labeled vectors. + * @return itself + */ + def setInitialCentroids(initialCentroids: DataSet[LabeledVector]): KMeans = { + parameters.add(InitialCentroids, initialCentroids) + this + } + +} + +/** + * Companion object of KMeans. Contains convenience functions, the parameter type definitions + * of the algorithm and the [[FitOperation]] & [[PredictOperation]]. + */ +object KMeans { + val CENTROIDS = "centroids" + + case object NumIterations extends Parameter[Int] { + val defaultValue = Some(10) + } + + case object InitialCentroids extends Parameter[DataSet[LabeledVector]] { + val defaultValue = None + } + + // ========================================== Factory methods ==================================== + + def apply(): KMeans = { + new KMeans() + } + + // ========================================== Operations ========================================= + + /** + * [[PredictOperation]] for vector types. The result type is a [[LabeledVector]]. + */ + implicit def predictValues = { + new PredictOperation[KMeans, Vector, LabeledVector] { + override def predict( + instance: KMeans, + predictParameters: ParameterMap, + input: DataSet[Vector]) + : DataSet[LabeledVector] = { + + instance.centroids match { + case Some(centroids) => { + input.map(new SelectNearestCenterMapper).withBroadcastSet(centroids, CENTROIDS) + } + + case None => { + throw new RuntimeException("The KMeans model has not been trained. Call first fit" + + "before calling the predict operation.") + } + } + } + } + } + + /** + * [[FitOperation]] which iteratively computes centroids that match the given input DataSet by + * adjusting the given initial centroids. + */ + implicit def fitKMeans = { + new FitOperation[KMeans, Vector] { + override def fit( + instance: KMeans, + fitParameters: ParameterMap, + input: DataSet[Vector]) + : Unit = { + val resultingParameters = instance.parameters ++ fitParameters + + val centroids: DataSet[LabeledVector] = resultingParameters.get(InitialCentroids).get + val numIterations: Int = resultingParameters.get(NumIterations).get + + val finalCentroids = centroids.iterate(numIterations) { currentCentroids => + val newCentroids: DataSet[LabeledVector] = input + .map(new SelectNearestCenterMapper).withBroadcastSet(currentCentroids, CENTROIDS) + .map(x => (x.label, x.vector, 1.0)).withForwardedFields("label->_1; vector->_2") + .groupBy(x => x._1) + .reduce((p1, p2) => (p1._1,(p1._2.asBreeze + p2._2.asBreeze).fromBreeze, p1._3 + p2._3)) + .withForwardedFields("_1") + .map(x => LabeledVector(x._1, (x._2.asBreeze :/ x._3).fromBreeze)) --- End diff -- done
--- If your project is set up for it, you can reply to this email and have your reply appear on GitHub as well. If your project does not have this feature enabled and wishes so, or if the feature is enabled but not working, please contact infrastructure at infrastruct...@apache.org or file a JIRA ticket with INFRA. ---